Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msr244DOI Listing

Publication Analysis

Top Keywords

mads-box genes
12
fleshy fruits
12
fruits
8
fruits derive
8
seed dispersal
8
fleshy structures
8
fruit-like structures
8
fleshy
7
structures
6
molecular analyses
4

Similar Publications

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Transcriptomics and Plant Hormone Analysis Reveal the Mechanism of Branching Angle Formation in Tea Plants ().

Int J Mol Sci

January 2025

National Centre for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.

The branching angle of tea plants is a key factor in determining their branching structure, which significantly affects yield, suitability for mechanical harvesting, and overall plant architecture. However, the mechanisms underlying branching angle formation in tea plants remain unclear. In this study, we explored the mechanism of branching angle formation in tea plants by analysing the transcriptome and plant hormone levels of tea plant cultivars with different branching angles.

View Article and Find Full Text PDF

The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing .

Int J Mol Sci

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China.

Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat.

View Article and Find Full Text PDF

Research Progress on Gene Regulation of Plant Floral Organogenesis.

Genes (Basel)

January 2025

National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV; ) and Triticum mosaic virus (TriMV; ), the type members of the genera and , respectively, in the family , are economically important wheat viruses in the Great Plains region of the USA. Co-infection of wheat by WSMV and TriMV results in disease synergism. Wheat transcriptome from singly (WSMV or TriMV) and doubly (WSMV+TriMV) infected upper uninoculated leaves were analyzed by RNA-Seq at 9, 12, and 21 days postinoculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!