Two related triphenylamine-based dipolar and octupolar fluorophores are used to prepare aqueous suspensions of fluorescent organic nanoparticles (FONs) via the reprecipitation method. The obtained spherical nanoparticles (30-40 nm in diameter) are fluorescent in aqueous solution (up to 15% fluorescence quantum yield) and exhibit extremely high one- and two-photon brightness, superior to those obtained for quantum dots. Despite the two chromophores showing similar fluorescence in solution, the fluorescence of FONs made from the octupolar derivative is significantly red-shifted compared to that generated by the dipolar FONs. In addition, the maximum two-photon absorption cross section of the FONs made from the octupolar derivative is 55% larger than that of the dipolar derivative FONs. The experimental observations provide evidence that the different molecular shape (rodlike versus three-branched) and charge distribution (dipolar versus octupolar) of the two chromophores strongly affect the packing inside the nanoparticles as well as their spectroscopic properties and colloidal stability in pure water. The use of these FONs as probes for biphotonic in-vivo imaging is investigated on Xenopus laevis tadpoles to test their utilization for angiography. When using FONs made from the octupolar dye, the formation of microagglomerates (2-5 μm scale) is observed in vivo, with subsequent lethal occlusion of the blood vessels. Conversely, the nanoparticles of the dipolar dye allow acute imaging of blood vessels thanks to their suitable size and brightness, while no toxic effect is observed. Such a goal cannot be achieved with the dissolved dye, which permeates the vessel walls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201100726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!