A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating non-Gaussian diffusion model parameters in the presence of physiological noise and Rician signal bias. | LitMetric

Purpose: To assess the effects of Rician bias and physiological noise on parameter estimation for non-Gaussian diffusion models.

Materials And Methods: At high b-values, there are deviations from monoexponential signal decay known as non-Gaussian diffusion. Magnitude images have a Rician distribution, which introduces a bias that appears as non-Gaussian diffusion. A second factor that complicates parameter estimation is physiological noise. It has an intensity that depends on the b-value in a complicated manner. Hence, the signal distribution is unknown a priori. By measuring a large number of averages, however, the variance at each b-value can be estimated. Using Monte Carlo simulations, we compared uncorrected estimation to a corrected scheme that involves fitting to the mean value of the Rician distribution. We also evaluated effects of weighting with the inverse of the estimated variance in least-squares fitting. A human brain experiment illustrates parameter estimation effects and identifies brain regions affected by physiological noise.

Results: The simulations show that the corrected estimator is very accurate. The uncorrected estimator is heavily biased. In the human brain experiment, the magnitude of the relative bias ranges from 6%-31%, depending on the diffusion model. Weighting has negligible effects on accuracy, but improves precision in the presence of physiological noise. At low b-values, physiological noise is prominent in cerebrospinal fluid. At high b-values there is physiological noise in white matter structures near the ventricles.

Conclusion: Bias correction is essential and weighting may be beneficial. Physiological noise has significant effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.22826DOI Listing

Publication Analysis

Top Keywords

physiological noise
28
non-gaussian diffusion
16
parameter estimation
12
diffusion model
8
physiological
8
presence physiological
8
high b-values
8
rician distribution
8
human brain
8
brain experiment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!