Purpose: Tumor necrosis factor α (TNF-α) plays a key role in the progression of rheumatoid arthritis and is an important target for anti-rheumatic therapies. TNF-α expression can be silenced with small interfering RNA (siRNA), but efficacy is dependent on efficient and safe siRNA delivery vehicles. We aimed to identify polymeric nanocarriers for anti-TNF-α siRNA with optimal efficacy and minimal off-target effects in vitro.

Methods: TNF-α silencing with polymeric siRNA nanocarriers was compared in lipopolysaccharide-activated RAW 264.7 macrophages by real-time reverse transcription (RT)-PCR. Expression of non-target genes involved in inflammation, apoptosis, and cell cycle progression was determined by RT-PCR, toxicity evaluated by propidium iodide and annexin V staining.

Results: PAMAM dendrimers (G4 and G7) and dextran nanogels mediated remarkably high concentration-dependent gene silencing and low toxicity; dioleoyltrimethylammoniumpropane-modified poly(DL-lactide-co-glycolide acid) nanoparticles, thiolated, trimethylated chitosan and poly[(2-hydroxypropyl)methacrylamide 1-methyl-2-piperidine methanol] polyplexes were less efficient transfectants. There were minor changes in the regulation of off-target genes, mainly dependent on nanocarrier and siRNA concentration.

Conclusions: Dextran nanogels and PAMAM dendrimers mediated high gene silencing with minor toxicity and off-target transcriptional changes and are therefore expected to be suitable siRNA delivery systems in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-011-0589-0DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
polymeric sirna
8
sirna nanocarriers
8
toxicity off-target
8
sirna delivery
8
pamam dendrimers
8
dextran nanogels
8
sirna
7
comparison polymeric
4
nanocarriers murine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!