Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of the present study was to examine the effectiveness of fluorine and silver ions implanted and deposited into acrylic resin (poly(methyl methacrylate)) using a hybrid process of plasma-based ion implantation and deposition. The surface characteristics were evaluated by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy. In addition, an antibacterial activity test was performed by the adenosine-5'-triphosphate luminescence method. XPS spectra of modified specimens revealed peaks due to fluoride and silver. The water contact angle increased significantly due to implantation and deposition of both fluorine and silver ions. In addition, the presence of fluorine and silver was found to inhibit bacterial growth. These results suggest that fluorine and silver dual-ion implantation and deposition can provide antibacterial properties to acrylic medical and dental devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2011.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!