Despite its high sensitivity, the variable specificity of magnetic resonance imaging (MRI) in breast cancer diagnosis can lead to unnecessary biopsies and over-treatment. Scintimammography (SMM) could potentially supplement MRI to improve the diagnostic specificity. The synergistic combination of MRI and SMM (MRSMM) could result in both high sensitivity from MRI and high specificity from SMM. Development of such a dual-modality system requires the integration of a radio frequency (RF) coil and radiation detector in a strong magnetic field without significant mutual interference. In this study, we developed and tested a unilateral breast array coil specialized for MRSMM imaging. The electromagnetic field, specific absorption ratio and RF coil parameters with cadmium-zinc-telluride detectors encapsulated in specialized RF and gamma-ray shielding mounted within the RF coil were investigated through simulation and experimental measurements. Simultaneous MR and SMM images of a breast phantom were also acquired using the integrated MRSMM system. This work, we feel, represents an important step toward the fabrication of a working MRSMM system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517888 | PMC |
http://dx.doi.org/10.1088/0031-9155/56/21/004 | DOI Listing |
Med Phys
January 2025
Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.
Background: Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning.
View Article and Find Full Text PDFMultichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils and coil arrays often faces technical challenges in achieving the required high operating frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between resonant elements. In this work, we propose a high impedance microstrip transmission line resonator (HIMTL) technique that has unique high frequency capability and adequate EM decoupling without the use of dedicated decoupling circuits.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Instituto Nacional de Astrofísica, Óptica y Electrónica-INAOE, Puebla 72840, Mexico.
This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Neurosurgery Department, the First Affiliated Hospital of Ningbo University, Ningbo 315000, China. Electronic address:
Brain Stimul
January 2025
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA, 01609; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA; Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA, USA, 01609.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!