The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-385991-4.00004-0 | DOI Listing |
J Evol Biol
August 2024
Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India.
Type III interferon (IFN), also known as IFN-λ, is an innate antiviral protein. We retrieved the sequences of IFN-λ and their receptors from 42 tetrapod species and conducted a computational evolutionary analysis to understand the diversity of these genes. The copy number variation (CNV) of IFN-λ was determined through qPCR in Indian cattle and buffalo.
View Article and Find Full Text PDFPLoS One
October 2023
Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
Median fins are thought to be ancestors of paired fins which in turn give rise to limbs in tetrapods. However, the developmental mechanisms of median fins remain largely unknown. Nonsense mutation of the T-box transcription factor eomesa in zebrafish results in a phenotype without dorsal fin.
View Article and Find Full Text PDFFront Immunol
February 2023
Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico.
Background: The axolotl, is a unique biological model for complete tissue regeneration. Is a neotenic endangered species and is highly susceptible to environmental stress, including infectious disease. In contrast to other amphibians, the axolotl is particularly vulnerable to certain viral infections.
View Article and Find Full Text PDFAnimals (Basel)
January 2023
Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes.
View Article and Find Full Text PDFGenome Biol Evol
January 2023
Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762, USA.
The troponin (Tn) complex, responsible for the Ca2+ activation of striated muscle, is composed of three interacting protein subunits: TnC, TnI, and TnT, encoded by TNNC, TNNI, and TNNT genes. TNNI and TNNT are sister gene families, and in mammals the three TNNI paralogs (TNNI1, TNNI2, TNNI3), which encode proteins with tissue-specific expression, are each in close genomic proximity with one of the three TNNT paralogs (TNNT2, TNNT3, TNNT1, respectively). It has been widely presumed that all vertebrates broadly possess genes of these same three classes, although earlier work has overlooked jawless fishes (cyclostomes) and cartilaginous fishes (chimeras, rays, and sharks), which are distantly related to other jawed vertebrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!