Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391711 | PMC |
http://dx.doi.org/10.1088/0031-9155/56/20/014 | DOI Listing |
Sci Rep
December 2024
College of Computer Science, Chengdu University, Chengdu, 610106, China.
This study offers a comprehensive analysis of the Perturbed Schrödinger -Hirota Equation (PSHE), crucial for understanding soliton dynamics in modern optical communication systems. We extended the traditional Nonlinear Schrödinger Equation (NLSE) to include higher-order nonlinearities and spatiotemporal dispersion, capturing the complexities of light pulse propagation. Employing the modified auxiliary equation method and Adomian Decomposition Method (ADM), we derived a spectrum of exact traveling wave solutions, encompassing exponential, rational, trigonometric, and hyperbolic functions.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China.
The development of high-performance bifunctional single-atom catalysts for use in applications, such as zinc-air batteries, is greatly impeded by mild oxygen reduction and evolution reactions (ORR and OER). Herein, we report a bifunctional oxygen electrocatalyst designed to overcome these limitations. The catalyst consists of well-dispersed low-nuclearity Co clusters and adjacent Co single atoms over a nitrogen-doped carbon matrix (Co/NC).
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China.
Piezoelectric resonance sensors are essential to many diverse applications associated with chemical and biological sensing. In general, they rely on continuously detecting the resonant frequency shift of piezoelectric resonators due to analytes accreting on their surfaces in vacuum, gas or fluid. Resolving the small analyte changes requires the resonators with a high quality factor.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants fMLP and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration.
View Article and Find Full Text PDFPacing Clin Electrophysiol
December 2024
Department of Cardiology, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK.
Background: Pulmonary vein isolation (PVI) has been established as an effective management option for symptomatic paroxysmal atrial fibrillation (PAF). We aimed to explore the role of P-wave parameters in a 12-lead electrocardiogram (ECG) in predicting the success of repeat PAF ablation.
Methods: We enrolled consecutive patients who underwent a second AF ablation procedure for PAF in a UK tertiary center after an index ablation conducted between 2018 and 2019 and a repeat ablation up to 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!