Vibrational sum frequency generation (VSFG) spectroscopy was used in conjunction with steady-state IR spectroscopy, atomic force microscopy (AFM), and spectroscopic ellipsometry to characterize organic semiconductor thin films that were vapor deposited on silica- and trimethoxy(octadecyl)silane (ODTMS)-functionalized silica surfaces. The growth of perylene derivative N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C(8)) was found to proceed differently on simple glass slides relative to that of native oxide on silicon and fused quartz slides. VSFG was applied to these samples to isolate structural changes that occurred specifically at the buried interface between the organic semiconductor and the silica dielectric upon thermal annealing. A model was introduced to globally fit the imide carbonyl symmetric and asymmetric interfacial spectra that included contributions from both inner and outer interfaces. The fits to the VSFG data and AFM topographic images revealed significant reordering at the outer interface on all substrates upon thermal annealing. Within the model, the spectroscopic data reported that the inner interfacial PTCDI-C(8) monolayer reoriented to a more reclined phase on bare substrates after annealing but remained essentially unchanged on ODTMS monolayers. Electrical characterization of PTCDI-C(8) field-effect transistors indicated that electron mobilities were higher on bare substrate devices but could be improved by a factor of 2 on both surface types by thermal annealing. The mobility effects were attributed to the annealing-driven coalescence of PTCDI-C(8) grain boundaries. Consistent with previous structural reports, the molecular rearrangements of the first monolayer of PTCDI-C(8) on bare substrates that were reported by VSFG spectroscopy had a noticeable impact on the device performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la202958a | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films.
View Article and Find Full Text PDFSci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
J Chem Phys
January 2025
Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan.
Organic multilayer systems, which are stacked layers of different organic materials, are used in various organic electronic devices such as organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). In particular, OFETs are promising as key components in flexible electronic devices. In this study, we investigated how the inclusion of an insulating tetratetracontane (TTC) interlayer in ambipolar indigo-based OFETs can be used to alter the crystallinity and electrical properties of the indigo charge transport layer.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (). We previously showed that addition of a poly(ethylene-oxide)--poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!