Exclusion of impurity particles during grain growth in charged colloidal crystals.

Langmuir

Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya, Aichi 467-8603, Japan.

Published: November 2011

We examine the spatial distribution of fluorescent-labeled charged polystyrene (PS) particles (particle volume fraction ϕ = 0.0001 and 0.001, diameter d = 183 and 333 nm) added to colloidal crystals of charged silica particles (ϕ = ϕ(s) = 0.035-0.05, d = 118 nm). At ϕ(s) = 0.05, the PS particles were almost randomly distributed in the volume-filling polycrystal structures before the grain growth process. Time-resolved confocal laser scanning microscopy observations reveal that the PS particles are swept to the grain boundaries of the colloidal silica crystals owing to grain boundary migration. PS particles with d = 2420 nm are not excluded from the silica crystals. We also examine influences of the impurities on the grain growth laws, such as the power law growth, size distribution, and existence of a time-independent distribution function of the scaled grain size.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la202899vDOI Listing

Publication Analysis

Top Keywords

grain growth
12
colloidal crystals
8
crystals examine
8
silica crystals
8
particles
6
grain
6
exclusion impurity
4
impurity particles
4
particles grain
4
growth
4

Similar Publications

Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.

View Article and Find Full Text PDF

Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.

View Article and Find Full Text PDF

The proteome is a terminal electron acceptor.

Proc Natl Acad Sci U S A

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Article Synopsis
  • Microbial metabolism is highly adaptable, allowing growth on varying carbon sources through fermentation and respiration.
  • A mathematical framework was developed to analyze cellular resource allocation alongside redox chemistry, highlighting how metabolism balances carbon, electrons, and energy while treating biomass as both a product and catalyst for growth.
  • The study found that proteins in microbes evolve to enhance redox matching, suggesting that genetic changes that may not benefit individual proteins can still be favored if they improve the overall fitness of the microbial population.
View Article and Find Full Text PDF

Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.

View Article and Find Full Text PDF

Background: Genetic variations have emerged as crucial players in the etiology of Alzheimer's disease (AD), and they serve for a better understanding of the disease mechanisms; yet the specific roles of these genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Therefore, we generated zebrafish models for AD variants to analyze the in depth molecular and biological functions of these variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!