The present paper relies on the original idea to design multifunctional coatings, and in particular highly efficient intumescent flame retardant coatings, based on the diffusion of polyphosphates (PSPs) in exponentially growing "layer-by-layer" films made from montmorillonite (MMT) and poly(allylamine) (PAH). Here, we used polyphosphates as an acid source, polyallylamine as both a carbon source and a swelling agent, and finally clays to reinforce the intumescent char strength and also for their oxygen barrier property. The coatings made from the alternated deposition of n = 60 layer pairs of PAH and MMT reach a considerable thickness of ∼18 μm with well-defined ordering of the MMT in the direction parallel to the substrate. Structural, morphological, mechanical, gas barrier, and fire resistance properties of these films have been studied. Excellent oxygen barrier properties and extraordinary fire resistance properties are demonstrated based on the basis of a strong increase of the time to ignition and on a decrease of the heat release rate of polylactide substrates during mass loss calorimeter tests. This new and innovative intumescent flame retardant system based on (PAH-MMT)(n)-PSP coatings is a promising universal treatment for current polymeric materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la203252qDOI Listing

Publication Analysis

Top Keywords

oxygen barrier
12
diffusion polyphosphates
8
intumescent flame
8
flame retardant
8
fire resistance
8
resistance properties
8
polyphosphates polyallylamine-montmorillonite
4
polyallylamine-montmorillonite multilayer
4
films
4
multilayer films
4

Similar Publications

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

Water-Mediated Proton Hopping Mechanisms at the SnO(110)/HO Interface from Ab Initio Deep Potential Molecular Dynamics.

Precis Chem

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.

View Article and Find Full Text PDF

Sulfamethoxazole (SMX) and its antibiotic resistance genes (ARGs) are potential threats to public health. Microwave catalytic technology is an efficient environmental remediation technology, and a reasonable design of the catalyst enables the system to achieve an ideal remediation effect under low microwave power. In this study, a microwave catalyst (FeCO-2) that activates molecular oxygen (O) was designed on the basis of rational theoretical organization.

View Article and Find Full Text PDF

Nanoscale insight into the interaction mechanism underlying the transport of microplastics by bubbles in aqueous environment.

J Colloid Interface Sci

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:

The ecological risk of microplastics (MPs) is raising concern about their transport and fate in aquatic ecosystems. The capture of MPs by bubbles is a ubiquitous natural phenomenon in water-based environment, which plays a critical role in the global cycling of MPs, thereby increasing their environmental threats. However, the nanoscale interaction mechanisms between bubbles and MPs underlying MPs transport by bubbles in complex environmental systems remain elusive.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!