A high-throughput screen of our compound archive revealed a novel class of dual FMS-like tyrosine kinase 3 (FLT3)/c-KIT inhibitors. With the help of molecular modeling, this class was rapidly optimized for both potency against FLT3 and FLT3/c-KIT and excellent potency in cell-based assays, leading to dose-dependent cell death in acute myelogenous leukemia (AML) patient blast samples. Ultimately, the AML patient blast data defined the preferred target profile as we designed and evaluated a set of FLT3 selective and FLT3/c-KIT dual molecules. Further optimization for pharmacokinetic properties resulted in the selection of the dual FLT3/c-KIT inhibitor, N(3)-(4-(trans-4-morpholinocyclohexyl)phenyl)-1-(pyridin-2-yl)-1H-1,2,4-triazole-3,5-diamine, VX-322 (compound 37), to move forward to preclinical evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm200712h | DOI Listing |
J Cell Mol Med
December 2024
Menarini Group, Preclinical and Translational Sciences, Pomezia, Rome, Italy.
MEN1703 is a first-in-class, oral, Type I dual PIM/FMS-like tyrosine kinase 3 inhibitor (FLT3i) investigated in a Phase I/II DIAMOND-01 trial in patients with acute myeloid leukaemia (AML). Gilteritinib is a highly potent and selective oral FLT3i approved for the treatment of relapsed/refractory AML with FLT3 mutations. Although gilteritinib showed strong single-agent activity in FLT3-mutated AML, the development of gilteritinib resistance limits response durability, indicating the importance of novel combination strategies to improve disease outcome.
View Article and Find Full Text PDFHypertension
November 2024
West China Second University Hospital, Chengdu, China (X.L.).
Int J Biochem Cell Biol
December 2024
Department of General Surgery, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-sen University, Nanning 530022, China. Electronic address:
Background: FMS-like tyrosine kinase 3 (FLT3), a key target protein for treating acute myeloid leukemia, has recently been found to be closely related to ferroptosis in breast cancer (BC). However, the mechanism by which FLT3 regulates ferroptosis in BC remains unknown. Whether this regulatory relationship can be exploited for BC treatment needs further exploration.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, PR China. Electronic address:
Synergetic inhibition of FMS-like tyrosine kinase 3 (FLT3) and histone deacetylase (HDAC) by small molecule chimera presents a promising therapeutic approach for acute myeloid leukemia (AML) with FLT3 mutations. In this study, we first observed that the combined use of FLT3 inhibitor gilteritinib and HDAC inhibitor vorinostat increased the survival rate of leukemia xenograft mouse model. Then, we employed a pharmacophore fusion strategy to develop a novel series of FLT3/HDAC dual inhibitors.
View Article and Find Full Text PDFBMC Pediatr
August 2024
Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Objective: Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!