Transition dipole moments of the Qy band in photosynthetic pigments.

J Phys Chem A

Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.

Published: November 2011

From studying the time evolution of the single electron density matrix within a density functional tight-binding formalism we calculate the Q(y) transition dipole moments vector direction and strength for a series of important photosynthetic pigments. We obtain good agreement with first-principles and experimental results and provide insights into the detailed nature of these excitations from the time evolving populations of molecular orbitals involved as well as correlations between pigment chemistry and dipole strength.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp203826qDOI Listing

Publication Analysis

Top Keywords

transition dipole
8
dipole moments
8
photosynthetic pigments
8
moments band
4
band photosynthetic
4
pigments studying
4
studying time
4
time evolution
4
evolution single
4
single electron
4

Similar Publications

Physical vapor deposition is widely used in the fabrication of organic light-emitting diodes and has the potential to adjust the density and orientation through substrate temperature control, which may lead to enhanced electrical performance. However, it is unclear whether this enhanced property is because of the horizontal molecular orientation or the increased density. The effects of the density and orientation on the electrical properties of a potential electron transport material, (3-dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (TPPO-dibenzacridine), were investigated.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.

View Article and Find Full Text PDF

2D metallic transition metal dichalcogenides: promising contact metals for 2D GaN-based (opto)electronic devices.

Phys Chem Chem Phys

January 2025

Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices, Jiangxi Science & Technology Normal University, Nanchang 330018, China.

Owing to their high light absorption coefficient, excellent electronic mobility, and enhanced excitonic effect, two-dimensional (2D) GaN materials hold great potential for applications in optoelectronic and electronic devices. As the metal-semiconductor junction (MSJ) is a fundamental component of semiconductor-based devices, identifying a suitable metal for contacting semiconductors is essential. In this work, detailed first-principles calculations were performed to investigate the contact behavior between the GaN monolayer (ML) and a series of 2D metals MX (M = Nb, Ta, V, Mo, or W; X = S or Se).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!