Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon.

Drug Metab Dispos

University at Buffalo, Department of Pharmacology and Toxicology, 3435 Main Street, Buffalo, NY 14214, USA.

Published: January 2012

Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (K(m) and V(max)) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (K(m) = 1.25 μM; V(max) = 9.78 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 1.03 μM; V(max) = 4.67 nmol · min(-1) · nmol P450(-1)), and CYP1A2 (K(m) = 1.96 μM; V(max) = 5.14 nmol · min(-1) · nmol P450(-1)), and the bioactivation of diazinon was mediated primarily by CYP1A1 (K(m) = 3.05 μM; V(max) = 2.35 nmol · min(-1) · nmol P450(-1)), CYP2C19 (K(m) = 7.74 μM; V(max) = 4.14 nmol · min(-1) · nmol P450(-1)), and CYP2B6 (K(m) = 14.83 μM; V(max) = 5.44 nmol · min(-1) · nmol P450(-1)). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (K(m) = 16.8 μM; V(max) = 1.38 nmol · min(-1) · nmol P450(-1)) and 3A4 (K(m) = 104 μM; V(max) = 5.15 nmol · min(-1) · nmol P450(-1)), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (K(m) = 5.04 μM; V(max) = 5.58 nmol · min(-1) · nmol P450(-1)). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250044PMC
http://dx.doi.org/10.1124/dmd.111.042572DOI Listing

Publication Analysis

Top Keywords

μm vmax
36
nmol min-1
36
min-1 nmol
36
nmol p450-1
36
nmol
18
methyl parathion
16
vmax
10
μm
9
min-1
9
p450-1
9

Similar Publications

Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na/H and Cl/HCO exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD.

View Article and Find Full Text PDF

Laccases have enormous potential as promising 'green' biocatalysts in environmental applications including wastewater treatment and polluted soil bioremediation. The catalytic oxidation reaction they perform uses only molecular oxygen without other cofactors, and the only product after the reaction is water. The immobilization of laccase offers several improvements such as protected activity and enhanced stability over free laccase.

View Article and Find Full Text PDF

The Brugada Syndrome Susceptibility Gene Modulates Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity.

Circ Res

August 2017

From the Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands (C.C.V., S.P., R.T., E.M.L., I.M., L.B., A.A.M.W., R.C., A.O.V., C.A.R., C.R.B.); Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T.); Université de Montréal, Canada (R.T.); Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands (B.d.J., R.W., B.J.B., A.O.V.); INSERM, CNRS, Université de Nantes, L'institut du Thorax, Nantes, France (J.B.); Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia (A.A.M.W.); and Electrophysiology and Heart Modeling Institute LIRYC, Université de Bordeaux, France (R.C.).

Rationale: Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near ) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved.

View Article and Find Full Text PDF

The synthesis of chitosan (Chs) and chitin (Chi) copolymer and grafting of acrylamide (AAm) onto the synthesized copolymer have been carried out by chemical methods. The grafted copolymer was characterized by FTIR, SEM and XRD. The extracellular cutinase of Aspergillus sp.

View Article and Find Full Text PDF

Immobilization of laccase in kappa-carrageenan based semi-interpenetrating polymer networks.

J Biotechnol

August 2010

Department of Chemistry, Faculty of Arts and Sciences, Gazi University, Teknikokullar, Ankara, Turkey.

Laccase enzyme (L) was immobilized by entrapment into semi-interpenetrating polymer networks (semi-IPNs) prepared from kappa-carrageenan with either poly(acrylamide-acrylic acid) [P(AAm-AA)/kappa-car] or poly(acrylamide-itaconic acid) [P(AAm-IA)/kappa-car]. For both systems, immobilized enzymes achieved the same optimum values observed for free enzyme (pH=5.0 and T=40 degrees C), except for P(AAm-IA)/kappa-car system there was a shift to 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!