Background: Stimulation of the intra-cardiac vagal nerves innervating the AV-node (AVNS) is a promising approach to slow down ventricular rate (VR) during atrial fibrillation (AF). Our purpose was to demonstrate that effects on R-R-interval during stable AF can be maintained for several months once optimized and that AVNS affects specifically the nerves innervating the AV-node.

Methods: Our study included both an acute and chronic phase. Fifteen goats were implanted with a pacemaker connected to an atrial and ventricular lead and a neurostimulator connected to an atrial lead placed at a certain septal site, to induce an AV prolongation. In the chronic experiments (n = 9), after assessment of optimal AVNS parameters, the effect of continuous AVNS on VR was studied during stable AF for up to 3 months. The mechanism of AVNS was studied using atropine and esmolol. Next, the effects of AVNS during the atrial refractory period on electrophysiological and hemodynamic parameters were investigated acutely (n = 7).

Results: The maximal effect was found at a stimulation frequency of 40 Hz, and increased with increasing pulse width (at lower voltages) and increasing voltage. After 0, 1, and 3 months of AVNS during stable AF, AVNS decreased average VR, respectively, 55% (n = 9), 48% (n = 8), and 28% (n = 6). The AVNS effect appeared to be dominantly parasympathetic. AVNS did not influence (1) the sinus node, (2) the refractory period of the atrial, ventricular tissue, and His and (3) hemodynamic parameters.

Conclusion: AVNS is efficient in reducing ventricular rate for at least 3 months using optimized parameters and specifically affects the parasympathetic nerves innervating the AV-node.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10840-011-9619-4DOI Listing

Publication Analysis

Top Keywords

nerves innervating
16
innervating av-node
12
ventricular rate
12
avns
11
stimulation intra-cardiac
8
intra-cardiac vagal
8
vagal nerves
8
months optimized
8
connected atrial
8
atrial ventricular
8

Similar Publications

Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.

View Article and Find Full Text PDF

The canine elbow joint is innervated by four nerves: the musculocutaneous, median, radial, and ulnar nerves. There is little data in the veterinary literature examining the course of the articular branches of those nerves. There is also no agreement as to their anatomical location in the joint capsule nor to their number.

View Article and Find Full Text PDF

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

Background: Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Proactive treatment options remain limited, which is exacerbated by a lack of sensitive and convenient diagnostics, especially early in disease progression or specifically to assess small fiber neuropathy (SFN), the loss of distal small diameter axons that innervate tissues and organs.

Methods: We designed, fabricated, tested, and validated a first-of-its-kind medical diagnostic device for the functional assessment of transdermal small fiber nerve activity.

View Article and Find Full Text PDF

The brachial plexus is the primary nerve source for the upper limb. Variations in its anatomy can alter the nerve supply to the upper extremity. Such deviations are clinically important, as they can change the symptomatology of various pathologic conditions, leading to misdiagnosis, inadequate treatment, and surgical failures as a consequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!