DNA methylation serves as the principal form of post-replicative epigenetic modification. It is intricately involved in gene regulation and silencing in eukaryotic cells, making significant contributions to cell phenotype. Much of it is mitotically inherited; some is passed on from one filial generation to the next. Establishment and maintenance of DNA methylation patterns in mammals is governed by three catalytically active DNA methyltransferases - DNMT3a, DNMT3b and DNMT1. While the first two are responsible mainly for de novo methylation, DNMT1 maintains the methylation patterns by preferentially catalyzing S-adenosyl methionine-dependant transfer of a methyl group to cytosine at hemimethylated CpG sites generated as a result of semi-conservative DNA replication. DNMT1 contains numerous regulatory domains that fine-tune associated catalytic activities, deregulation of which is observed in several diseases including cancer. In this minireview, we analyze the regulatory mechanisms of various sub-domains of DNMT1 protein and briefly discuss its pathophysiological and pharmacological implications. A better understanding of DNMT1 function and structure will likely reveal new applications in the treatment of associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180029PMC

Publication Analysis

Top Keywords

regulatory mechanisms
8
dna methylation
8
methylation patterns
8
dna
5
dnmt1
5
dna methyl
4
methyl transferase
4
transferase regulatory
4
mechanisms implications
4
implications health
4

Similar Publications

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

Epigenetic modification regulates the ligamentum flavum hypertrophy through miR-335-3p/SERPINE2/β-catenin signaling pathway.

Cell Mol Biol Lett

January 2025

Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.

Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.

Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!