Halobacterium salinarum NRC-1 contains multiple TBP and TFB proteins required for the recruitment of RNA polymerase for transcription initiation. The presence and the expression of genes encoding TFB were investigated in the two Hbt. salinarum strains NRC-1 and PHH1 and the mutant strain PHH4. The plasmid-encoded tfbC and tfbE genes of NRC-1 were lacking in PHH1 and PHH4. The 5'-end of the tfbF transcript was determined and contained a 5'-untranslated region of 39 nucleotides able to form a stem-loop structure. The expression of these tfb genes was studied in cultures growing at 15, 37°C and under heat shock conditions. Cold temperatures reduced growth and except for tfbF also the amounts of all tfb transcripts. However, the formation of gas vesicles increased in PHH1 and NRC-1. Heat shock reduced growth of PHH1 and NRC-1, but PHH4 was not affected. A 100-fold increase in tfbA and tfbB mRNA was observed in PHH1 and PHH4, whereas NRC-1 reduced the amounts of these transcripts and increased the expression of tfbG. All TFB proteins tested were able to interact with the transcription activator GvpE involved in gas vesicle formation that thus is able to recruit TFB to the gvp promoter.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-011-0756-zDOI Listing

Publication Analysis

Top Keywords

tfb
8
tfb genes
8
halobacterium salinarum
8
salinarum strains
8
activator gvpe
8
tfb proteins
8
phh1 phh4
8
heat shock
8
reduced growth
8
phh1 nrc-1
8

Similar Publications

Heteroleptic An (An = U, Np) chlorido-ketoenaminate complexes of the type [AnCl(TFB-BuA)(THF)] ( type: , ; TFB-BuA = 4-(-butylamino)-1,1,1-trifluorobut-3-en-2-one) and the homoleptic Np heteroarylalkenolate complexes [Np(PyTFP)] (, PyTFP = 1-(pyridin-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) and [Np(DMOTFP)] (, DMOTFP = 1-(4,5-dimethyloxazol-2-yl)-3,3,3-trifluoroprop-1-en-2-ol) were synthesized and characterized (SC-XRD, NMR, Vis-NIR, MS). While their solid-state structures compare well to those of their uranium analogues, the behavior in solution showed significant differences. The binding motif of the DMOTFP ligand in complex can change to form two different complex isomers, as seen by paramagnetic chemical shifts in NMR experiments.

View Article and Find Full Text PDF

Scope: This study aimed to assess the antioxidant, anti-inflammatory, and acetylcholinesterase activities of fruiting bodies (FB) and mycelium (M) extracts of Morchella esculenta L. collected from various regions of Pakistan. The samples included Skardu fruiting body (SKFB) and mycelia Skardu (SKM), Malam Jaba fruiting body (MJFB) and Malam Jaba mycelia (MJM), Krair Mansehra fruiting body (KMFB) and Krair Mansehra mycelia (KMM), and Thandiani fruiting body (TFB) and Thandiani mycelia (TM).

View Article and Find Full Text PDF

Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.

View Article and Find Full Text PDF

[18F]Tetrafluoroborate: a new NIS PET/CT radiopharmaceutical. An overview focused on differentiated thyroid cancer.

Eur Thyroid J

January 2025

G Treglia, Repubblica e Cantone Ticino Ente Ospedaliero Cantonale, Bellinzona, Switzerland.

Background: In relapsing differentiated thyroid cancer (DTC), the in vivo evaluation of natrium-iodine symporter (NIS) expression is pivotal in the therapeutic planning and is achieved by [131/123I]Iodine whole-body scan. However, these approaches have low sensitivity due to the low sensitivity due to the low resolution of SPECT. [18F]Tetrafluoroborate (TFB) has been proposed as a viable alternative, which could outperform [131/123I]Iodine scans owing to the superior PET resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!