Fenofibrate-induced decrease of expression of CYP2C11 and CYP2C6 in rat.

Biopharm Drug Dispos

Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská, 3, 775 15 Olomouc, Czech Republic.

Published: November 2011

This short communication is aimed to investigate whether the widely used hypolipidemic drug fenofibrate affects CYP2C11 and CYP2C6 in rats, both counterparts of human CYP2C9, known to metabolise many drugs including S-warfarin and largely used non-steroidal antiinflammatory drugs such as ibuprofen, diclofenac and others. The effects of fenofibrate on the expression of rat liver CYP2C11 and CYP2C6 were studied in both healthy Wistar rats and hereditary hypertriglyceridemic rats. Both strains of rats were fed on diet containing fenofibrate (0.1% w/w) for 20 days. Fenofibrate highly significantly suppressed the expression of mRNA of CYP2C11 and less that of CYP2C6 in liver microsomes of both rat strains; this effect was associated with a corresponding decrease in protein levels. The results indicate that the combination of fenofibrate with drugs metabolised by CYP2C9 in humans should be taken with caution as it may lead, for example, to the potentiation of warfarin effects. This type of drug interaction has been observed previously and the results presented here could contribute to the explanation of their mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.774DOI Listing

Publication Analysis

Top Keywords

cyp2c11 cyp2c6
16
fenofibrate
5
fenofibrate-induced decrease
4
decrease expression
4
cyp2c11
4
expression cyp2c11
4
cyp2c6
4
cyp2c6 rat
4
rat short
4
short communication
4

Similar Publications

Pregnane X receptor activation induces liver enlargement and regeneration and simultaneously promotes the metabolic activity of CYP3A1/2 and CYP2C6/11 in rats.

Basic Clin Pharmacol Toxicol

August 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver.

View Article and Find Full Text PDF

Recent investigations have highlighted the potential utility of the selective antagonist of the NMDA receptor GluN2B subunit for addressing major depressive disorders. Our previous study showed that the systemic administration of the antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, affected liver cytochrome P450 expression and activity. To discern between the central and peripheral mechanisms of enzyme regulation, our current study aimed to explore whether the intracerebral administration of CP-101,606 could impact cytochrome P450.

View Article and Find Full Text PDF

Background: Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system.

View Article and Find Full Text PDF

Gambogenic acid (GNA), which has a broad spectrum of anti-tumor activity, is considered as a potential anticancer ingredient. In this study, we examined the anti-tumor effect and the effect of GNA on CYP and pregnane X receptor (PXR). In anti-tumor experiments, an A549 cells tumor-bearing nude mice model was established.

View Article and Find Full Text PDF

Recent research indicates that selective NMDA receptor GluN2B subunit antagonists may become useful for the treatment of major depressive disorders. We aimed to examine in parallel the effect of the selective NMDA receptor GluN2B subunit antagonist CP-101,606 on the pituitary/serum hormone levels and on the regulation of cytochrome P450 in rat liver. CP-101,606 (20 mg/kg ip.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!