A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation. | LitMetric

Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation.

IEEE Trans Neural Syst Rehabil Eng

Department of Physiology, University of Alberta, Edmonton, Canada.

Published: December 2011

Electromechanical delay (EMD) is a biological artifact that arises due to a time lag between electrical excitation and tension development in a muscle. EMD is known to cause degraded performance and instability during neuromuscular electrical stimulation (NMES). Compensating for such input delay is complicated by the unknown nonlinear muscle force-length and muscle force-velocity relationships. This paper provides control development and a mathematical stability analysis of a NMES controller with a predictive term that actively accounts for EMD. The results are obtained through the development of a novel predictor-type method to address the delay in the voltage input to the muscle. Lyapunov-Krasovskii functionals are used within a Lyapunov-based stability analysis to prove semi-global uniformly ultimately bounded tracking. Experiments on able-bodied volunteers illustrate the performance and robustness of the developed controller during a leg extension trajectory following task.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2011.2166405DOI Listing

Publication Analysis

Top Keywords

electromechanical delay
8
neuromuscular electrical
8
electrical stimulation
8
stability analysis
8
predictor-based compensation
4
compensation electromechanical
4
delay
4
delay neuromuscular
4
stimulation electromechanical
4
delay emd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!