The use of Electronic Healthcare Records (EHR) standards in the development of healthcare applications is crucial for achieving the semantic interoperability of clinical information. Advanced EHR standards make use of the dual model architecture, which provides a solution for clinical interoperability based on the separation of the information and knowledge. However, the impact of such standards is biased by the limited availability of tools that facilitate their usage and practical implementation. In this paper, we present an approach for the automatic generation of clinical applications for the ISO 13606 EHR standard, which is based on the dual model architecture. This generator has been generically designed, so it can be easily adapted to other dual model standards and can generate applications for multiple technological platforms. Such good properties are based on the combination of standards for the representation of generic user interfaces and model-driven engineering techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-011-9783-1DOI Listing

Publication Analysis

Top Keywords

dual model
12
iso 13606
8
ehr standards
8
model architecture
8
standards
5
generative tool
4
tool building
4
building health
4
applications
4
health applications
4

Similar Publications

Purpose: To examine associations between clinical measures (self-reported and clinician-administered) and subsequent injury rates in the year after concussion return to play (RTP) among adolescent athletes.

Methods: We performed a prospective, longitudinal study of adolescents ages 13-18 years. Each participant was initially assessed within 21 days of concussion and again within 5 days of receiving RTP clearance from their physician.

View Article and Find Full Text PDF

The randomness and volatility of existing clean energy sources have increased the complexity of grid scheduling. To address this issue, this work proposes an artificial intelligence (AI) empowered method based on the Environmental, Social, and Governance (ESG) big data platform, focusing on multi-objective scheduling optimization for clean energy. This work employs a combination of Particle Swarm Optimization (PSO) and Deep Q-Network (DQN) to enhance grid scheduling efficiency and clean energy utilization.

View Article and Find Full Text PDF

Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.

View Article and Find Full Text PDF

Resources and land carrying capacity are vital to the survival and development of human society and form the foundation for ensuring food security. However, evaluating land carrying capacity solely based on grain production is overly simplistic. A comprehensive assessment from the perspective of dietary nutrition is needed to more accurately reflect the actual carrying capacity of land.

View Article and Find Full Text PDF

Prefabricated construction involves manufacturing components in a factory and then transporting them to a construction site for assembly, yielding resource savings and improved efficiency. However, the large size and weight of prefabricated components, along with strict delivery requirements, introduce logistical challenges, such as increased carbon emissions during transport and site congestion. This study addresses the dual-objective vehicle scheduling problem for prefabricated components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!