A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. | LitMetric

c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells.

Anticancer Drugs

Laboratory of Tumor Molecular Diagnosis, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China.

Published: January 2012

Microtubule-binding agents (MBAs) form one of the most important anticancer-drug families, but their molecular mechanisms are poorly understood. MBAs such as paclitaxel (PTX) stabilize microtubules, whereas XRP44X (a novel pyrazole) and combretastatins A4 (CA4) destabilize microtubules. These two different types of MBAs have potent antitumor activity. Comparisons of their effects on signal transduction and cellular responses will help uncover the molecular mechanism by which MBAs affect tumor cells. We used MCF-7 cells to compare the effects of the three MBAs on the cytoskeleton, cell cycle distribution, and activation of the three major mitogen-activated protein kinase (MAPK) signaling cascades [extracellular signal-related kinases, c-Jun N-terminal kinase (JNK), and p38 MAPK] using pharmacological inhibitors. The G2/M phase arrest was induced following polymerization of microtubules by PTX and depolymerization by XRP44X and CA4. The three major MAPKs were rapidly activated by XRP44X, and extracellular signal-related kinases and p38 by PTX, whereas JNK did not quickly respond to PTX. Pharmacological inhibitors indicated that activation of JNK is principally required for XRP44X- and CA4-induced microtubule depolymerization and G2/M phase arrest. Our results suggest that early phosphorylation of JNK is a specific mechanism involved in microtubule depolymerization by certain MBAs.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0b013e32834bc978DOI Listing

Publication Analysis

Top Keywords

microtubule depolymerization
12
c-jun n-terminal
8
n-terminal kinase
8
depolymerization g2/m
8
three major
8
signal-related kinases
8
pharmacological inhibitors
8
g2/m phase
8
phase arrest
8
mbas
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!