Ribosomal protein S3 is stabilized by sumoylation.

Biochem Biophys Res Commun

Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701, Republic of Korea.

Published: October 2011

Human ribosomal protein S3 (rpS3) acts as a DNA repair endonuclease. The multiple functions of this protein are regulated by post-translational modifications including phosphorylation and methylation. Using a yeast-two hybrid screen, we identified small ubiquitin-related modifier-1 (SUMO-1) as a new interacting partner of rpS3. rpS3 interacted with SUMO-1 via the N- and C-terminal regions. We also observed sumoylation of rpS3 in Escherichia coli and mammalian cell systems. Furthermore, we discovered that one of three lysine residues, Lys18, Lys214, or Lys230, was sumoylated in rpS3. Interestingly, sumoylated rpS3 was resistant to proteolytic activity, indicating that SUMO-1 increased the stability of the rpS3 protein. We concluded that rpS3 is covalently modified by SUMO-1 and this post-translational modification regulates rpS3 function by increasing rpS3 protein stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.09.099DOI Listing

Publication Analysis

Top Keywords

rps3
10
ribosomal protein
8
sumoylated rps3
8
rps3 protein
8
protein stabilized
4
stabilized sumoylation
4
sumoylation human
4
human ribosomal
4
protein
4
protein rps3
4

Similar Publications

Osteoarthritis (OA), particularly in the knee and hip, poses a significant global health challenge due to limited therapeutic options. To elucidate the molecular mechanisms of OA and identify potential biomarkers and therapeutic targets, we utilized genome-wide association studies (GWAS) and cis-miRNA expression quantitative trait loci (cis-miR-eQTL) datasets to identify miRNAs associated with OA, revealing 16 that were linked to knee OA and 21 to hip OA. Among these, hsa-miR-1303 was significantly upregulated in both knee and hip OA (IVW: = 6.

View Article and Find Full Text PDF

Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol.

Ecotoxicol Environ Saf

January 2025

Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan,  Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea. Electronic address:

Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells.

View Article and Find Full Text PDF

Background: Zanthoxylum L., an important genus in the Rutaceae family, has great edible and medical values. However, the high degree of morphological similarity among species and the lack of sufficient chloroplast (cp) genomic resources have greatly impeded germplasm identification and phylogenetic analyses of

Methods: Here we assembled cp genomes of five widespread species (, , , and ) in China as a case study, comparative analysis of these assembled cp genomes.

View Article and Find Full Text PDF

The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.

View Article and Find Full Text PDF

Serine related gene CCT6A promotes metastasis of hepatocellular carcinoma via interacting with RPS3.

Funct Integr Genomics

December 2024

Department of Infectious Disease, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, No.20 Jinyu Road, Yubei District, Chongqing, 401122, China.

Metastasis is responsible for approximately 90% of lethality from solid tumors. Metabolic abnormalities are one of the key characteristics of tumor cells, closely associated with tumorigenesis and progression. The de novo synthesis pathway of serine is a key metabolic bypass in glycolysis, which could provide material and energy basis for the rapid proliferation of tumor cells by mediating one-carbon metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!