Cellular migration to electrospun poly(lactic acid) fibermats.

J Biomater Sci Polym Ed

a Department of Frontier Materials , Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho , Showa-ku , Nagoya , 466-8555 , Japan.

Published: May 2016

Nonwoven fabrics prepared via an electrospinning method, so-called electrospun fibermats, are expected to be promising scaffold materials for bone tissue engineering. In the present work, poly(L-lactic acid) (PLLA) fibermats, consisting of fibers with diameters ranging from 1 to 10 μm, were prepared by electrospinning. Mouse osteoblast-like cells (MC3T3-E1) were seeded on the fibermats with various fiber diameters (10, 5 and 2 μm; they are denoted by samples A, B and C, respectively) and cultured in two different directions in order to compare the migration behaviours into the scaffold of the normal condition and the anti-gravity condition. The cells in/on the fibermats were observed by laser confocal microscopy to estimate the cellular migration ability into them. When the MC3T3-E1 cells were cultured in the normal direction, the thickness of their layer increased to approx. 90 μm in the sample A, consisting of 10-μm fibers after 13 days of culture, while that in the sample C, consisting of 2-μm fibers, did not increase. When the MC3T3-E1 cells were cultured in the anti-gravity condition, the thickness of the cell layer in the sample A increased to approx. 60 μm. These results mean that the MC3T3-E1 cells migrated into the inside of sample A in either the normal direction or the anti-gravity one. The cellular proliferation showed no significant difference among the fibermats with three different fiber diameters; MC3T3-E1 cells on the fibermat with 2 μm fiber diameter grew two-dimensionally, while they grew three-dimensionally in the fibermat with 10 μm fiber diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050611X599328DOI Listing

Publication Analysis

Top Keywords

mc3t3-e1 cells
16
cellular migration
8
prepared electrospinning
8
fiber diameters
8
anti-gravity condition
8
cells cultured
8
normal direction
8
increased approx
8
approx μm
8
sample consisting
8

Similar Publications

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by the microstructural depletion of bone tissue and decreased bone density, leading to an increased risk of fractures. Nakai, an endemic species of the Korean Peninsula, grows wild in Ulleungdo. In this study, we aimed to investigate the effects of and its components on osteoporosis.

View Article and Find Full Text PDF

The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.

View Article and Find Full Text PDF

Tortoiseshell and antler, the main components of , are natural products that can be used as traditional Chinese medicine (TCM) to alleviate osteoporosis and osteoarthritis. However, research on the active ingredients in tortoiseshell and antler for alleviating osteoporosis and osteoarthritis remains insufficient. This study primarily compares the antioxidant capacity of tortoiseshell gelatin and antler gelatin and their bioactive peptides, as well as their effects on the cell viability of MC3T3-E1 osteoblasts and HIG-82 chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!