This experiment aimed to study the molecular toxicity of methylmercury (MeHg) in liver, brain and white muscle of Atlantic salmon fed a diet based on fish oil (FO, high dietary n-3/n-6 ratio) compared to an alternative diet mainly based on vegetable oil (VO, low dietary n-3/n-6 ratio). Juvenile salmon were fed decontaminated diets or the FO and VO diets enriched with 5 mg Hg/kg (added as MeHg) for three months. The dietary lipid composition affected the fatty acid composition in the tissues, especially in liver and white muscle. After 84 days of exposure, the liver accumulated three times as much MeHg as the brain and white muscle. Vitamin C content and heme oxygenase, tubulin alpha (TUBA) and Cpt1 transcriptional levels all showed significant effects of MeHg exposure in the liver. TBARS, α-tocopherol, γ-tocopherol, and the transcriptional levels of thioredoxin, heme oxygenase, TUBA, PPARB1, D5D and D6D showed an effect of dietary lipid composition in liver tissue. Effects of dietary lipids were observed in brain tissue for MT-A, HIF1, Bcl-X and TUBA. Interaction effects between MeHg exposure and dietary lipid composition were observed in all tissues. Our data suggest that dietary fats have modulating effects on MeHg toxicity in Atlantic salmon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2011.09.025DOI Listing

Publication Analysis

Top Keywords

atlantic salmon
12
white muscle
12
dietary lipid
12
lipid composition
12
effects mehg
12
dietary
8
dietary lipids
8
toxicity atlantic
8
brain white
8
salmon fed
8

Similar Publications

The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon () was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate.

View Article and Find Full Text PDF

Risk Assessment of Harmful Algal Blooms in Salmon Farming: Scotland as a Case Study.

Toxins (Basel)

January 2025

Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.

This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.

View Article and Find Full Text PDF

In a previous study, we demonstrated successful regeneration of Atlantic salmon gill tissue following up to 50 % filament resection. The present study explored 1) the capacity of gill tissue to regenerate following more severe trauma, 2) if regeneration potential varies across regions of the arch, and 3) how tissue loss impacts the physiology of neighboring unresected filaments. Fish were divided between two resected groups and a control non-resected one.

View Article and Find Full Text PDF

Pharmaceutical contaminants have spread in natural environments across the globe, endangering biodiversity, ecosystem functioning, and public health. Research on the environmental impacts of pharmaceuticals is growing rapidly, although a majority of studies are still conducted under controlled laboratory conditions. As such, there is an urgent need to understand the impacts of pharmaceutical exposures on wildlife in complex, real-world scenarios.

View Article and Find Full Text PDF

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!