Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to investigate the structural and dynamical properties of ferroelectric liquid crystal (FLC) in different phases a model compound [4-(3)-(S)-methyl-2-(S)-chloropentanoyloxy)]-4'-nonyloxy-biphenyl (3M2CPNOB) is synthesized. High resolution transmission electron microscopy (HR-TEM) is applied to observe the morphology of 3M2CPNOB and temperature-dependent solid state (13)C NMR to record (13)C chemical shifts at different phases. A liquid nitrogen quenching method is used to maintain the conformation of the mesophases for HR-TEM experiments. TEM images show that all the smectic A (SmA), smectic C* (SmC*) and crystalline phases have lamellar morphology. The interplanar distances in the crystalline phase are smaller than those in SmA and SmC* phases because of denser arrangement of the molecules. Both (13)C chemical shifts and line shape vary with different phases. The experimental results suggest that SmC* phase as an intermediate occurs in the anisotropy transition process from SmA to crystalline phase, the helical structure of the SmC* phase unwinds in the magnetic field and the conformations of the SmA and isotropic phase are very similar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp2077962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!