Membrane-associated serine protease matriptase has been implicated in human diseases and might be a drug target. In the present study, a novel class of matriptase inhibitors targeting zymogen activation is developed by a combination of the screening of compound library using a cell-based matriptase activation assay and a computer-aided search of commercially available analogues of a selected compound. Four structurally related compounds are identified that can inhibit matriptase activation with IC(50) at low micromolar concentration in both intact-cell and cell-free systems, suggesting that these inhibitors target the matriptase autoactivation machinery rather than the intracellular signaling pathways. These activation inhibitors can also inhibit prostasin activation, a downstream event that occurs in lockstep with matriptase activation. In contrast, the matriptase catalytic inhibitor CVS-3983 at a concentration 300-fold higher than its K(i) fails to inhibit activation of either protease. Our results suggest that inhibiting matriptase activation is an efficient way to control matriptase function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214968PMC
http://dx.doi.org/10.1021/jm200920sDOI Listing

Publication Analysis

Top Keywords

matriptase activation
16
activation
9
matriptase
9
targeting zymogen
8
zymogen activation
8
activation control
4
control matriptase-prostasin
4
matriptase-prostasin proteolytic
4
proteolytic cascade
4
cascade membrane-associated
4

Similar Publications

Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane.

Hum Cell

December 2024

Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.

Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures.

View Article and Find Full Text PDF

Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression.

Matrix Biol

December 2024

Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland. Electronic address:

The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals.

View Article and Find Full Text PDF

Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used an advanced technique called HyCoSuL to design peptidomimetic inhibitors targeting specific serine proteases (HGFA, matriptase, and hepsin) that play key roles in this process, resulting in inhibitors that can form reversible bonds with the proteases.
  • * A promising tetrapeptide inhibitor named JH-1144 was found to be very effective against the target proteases with minimal effects on other important factors, while a tripeptide inhibitor, PK-1
View Article and Find Full Text PDF

Certain corona- and influenza viruses utilize type II transmembrane serine proteases for cell entry, making these enzymes potential drug targets for the treatment of viral respiratory infections. In this study, the cytotoxicity and inhibitory effects of seven matriptase/TMPRSS2 inhibitors (MI-21, MI-463, MI-472, MI-485, MI-1900, MI-1903, and MI-1904) on cytochrome P450 enzymes were evaluated using fluorometric assays. Additionally, their antiviral activity against influenza A virus subtypes H1N1 and H9N2 was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!