A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lower confidence bounds for prediction accuracy in high dimensions via AROHIL Monte Carlo. | LitMetric

Lower confidence bounds for prediction accuracy in high dimensions via AROHIL Monte Carlo.

Bioinformatics

Department of Epidemiology and Biostatistics and Institute of Bioinformatics, University of Georgia, Athens, GA, USA.

Published: November 2011

Motivation: Implementation and development of statistical methods for high-dimensional data often require high-dimensional Monte Carlo simulations. Simulations are used to assess performance, evaluate robustness, and in some cases for implementation of algorithms. But simulation in high dimensions is often very complex, cumbersome and slow. As a result, performance evaluations are often limited, robustness minimally investigated and dissemination impeded by implementation challenges. This article presents a method for converting complex, slow high-dimensional Monte Carlo simulations into simpler, faster lower dimensional simulations.

Results: We implement the method by converting a previous Monte Carlo algorithm into this novel Monte Carlo, which we call AROHIL Monte Carlo. AROHIL Monte Carlo is shown to exactly or closely match pure Monte Carlo results in a number of examples. It is shown that computing time can be reduced by several orders of magnitude. The confidence bound method implemented using AROHIL outperforms the pure Monte Carlo method. Finally, the utility of the method is shown by application to a number of real microarray datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btr542DOI Listing

Publication Analysis

Top Keywords

monte carlo
36
arohil monte
12
monte
9
carlo
9
high dimensions
8
high-dimensional monte
8
carlo simulations
8
method converting
8
pure monte
8
method
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!