Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Implementation and development of statistical methods for high-dimensional data often require high-dimensional Monte Carlo simulations. Simulations are used to assess performance, evaluate robustness, and in some cases for implementation of algorithms. But simulation in high dimensions is often very complex, cumbersome and slow. As a result, performance evaluations are often limited, robustness minimally investigated and dissemination impeded by implementation challenges. This article presents a method for converting complex, slow high-dimensional Monte Carlo simulations into simpler, faster lower dimensional simulations.
Results: We implement the method by converting a previous Monte Carlo algorithm into this novel Monte Carlo, which we call AROHIL Monte Carlo. AROHIL Monte Carlo is shown to exactly or closely match pure Monte Carlo results in a number of examples. It is shown that computing time can be reduced by several orders of magnitude. The confidence bound method implemented using AROHIL outperforms the pure Monte Carlo method. Finally, the utility of the method is shown by application to a number of real microarray datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btr542 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!