Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190381 | PMC |
http://dx.doi.org/10.1242/dev.071464 | DOI Listing |
Eur Heart J
January 2025
Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Cardiovascular disease remains a prominent cause of disability and premature death worldwide. Within this spectrum, carotid artery atherosclerosis is a complex and multifaceted condition, and a prominent precursor of acute ischaemic stroke and other cardiovascular events. The intricate interplay among inflammation, oxidative stress, endothelial dysfunction, lipid metabolism, and immune responses participates in the development of lesions, leading to luminal stenosis and potential plaque instability.
View Article and Find Full Text PDFJ Saudi Heart Assoc
December 2024
College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
Objectives: Zilebesiran is an investigational RNA interference therapeutic designed to lower blood pressure by targeting the hepatic production of angiotensinogen, the most upstream precursor of the renin-angiotensin-aldosterone system. This approach aims to offer long-lasting blood pressure control with potentially fewer doses compared to traditional antihypertensive medications. The objective of this systematic review and meta-analysis was to assess the antihypertensive efficacy of zilebesiran in patients with hypertension.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling 712100, China.
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China. Electronic address:
The compound m-Cresol, also referred to as 3-methylphenol,acts as a precursor in the creation of pesticides and plasticizers. This research has conducted a thorough evaluation of the toxic effects of m-cresol on the cardiac development of juvenile zebrafish, from 6 to 72 hpf. The study's results reveal that higher concentrations of m-Cresol, compared to lower ones, result in more severe heart abnormalities in zebrafish larvae.
View Article and Find Full Text PDFHepatol Commun
December 2024
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Background: Sphingosine-1 phosphate (S1P) is a bioactive lipid molecule that modulates inflammation and hepatic lipid metabolism in MASLD, which affects 1 in 3 people and increases the risk of liver fibrosis and hepatic cancer. S1P can be generated by 2 isoforms of sphingosine kinase (SphK). SphK1 is well-studied in metabolic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!