This review outlines concepts and applications of droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy (SERS) as well as the advantages of the approach. Even though the droplet-based flow-through technique is utilized in various fields, the review focuses on implementing droplet-based fluidic systems in Raman and SERS as these highly specific detection methods are of major interest in the field of analytics. With the combination of Raman or SERS with droplet-based fluidics, it is expected to achieve novel opportunities for analytics. Besides the approach of using droplet-based microfluidic devices as a detection platform, the unique properties of flow-through systems for the formation of droplets are capitalized to produce SERS active substrates and to accomplish uniform sample preparation. Within this contribution, previous reported applications on droplet-based flow-through Raman and SERS approaches and the additional benefit with regard to the importance in the field of analytics are considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1lc20638a | DOI Listing |
Anal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
J Colloid Interface Sci
January 2025
College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China. Electronic address:
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China. Electronic address:
Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China. Electronic address:
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!