Involvement of the calcineurin/NFAT pathway in transcription of cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) was demonstrated (Prasad and Inesi, Am J Physiol Heart Circ Physiol 300(1):H173-H180, 2011) by upregulation of SERCA2 following calcineurin (CN) activation by cytosolic Ca(2+), and downregulation of SERCA2 following CN inhibition with cyclosporine (CsA) or CN subunits gene silencing. We show here that in cultured cardiac myocytes, competitive engagement of the CN/NFAT pathway is accompanied by downregulation of SERCA2 and Ca(2+) signaling alterations. In fact, SERCA2 downregulation occurs following infection of myocytes with adenovirus vectors carrying luciferase or SERCA1 cDNA under control of NFAT-dependent promoters, but not under control of CMV promoters that do not depend on NFAT. SERCA2 downregulation is demonstrated by comparison with endogenous transcription and protein expression standards such as GAPDH and actin, indicating prominent SERCA2 involvement by the CN/NFAT pathway. Transcription of genes involved in hypertrophy, triggered by adrenergic agonist or by direct protein kinase C (PKC) activation with phorbol 12-myristate 13-acetate (PMA), is also prominently dependent on CN/NFAT. This is demonstrated by CN inhibition with CsA, CN subunits gene silencing with siRNA, displacement of NFAT from CN with 9,10-Dihydro-9,10[1',2']-benzenoanthracene-1,4-dione (INCA-6), and myocyte infection with vectors carrying luciferase cDNA under control of NFAT-dependent promoter. We show here that competitive engagement of the CN/NFAT pathway by endogenous genes involved in hypertrophy produces downregulation of SERCA2, reduction of Ca(2+) transport and inadequate Ca(2+) signaling. It is most interesting that, in the presence of adrenergic agonist, specific protein kinase C (PKC) inhibition with 3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione (Gö 6983) prevents development of hypertrophy and maintains adequate SERCA2 levels and Ca(2+) signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-011-1092-y | DOI Listing |
Int J Mol Sci
November 2024
Graduate Program in Translational Biomedicine (BIOTRANS), Grande Rio University (UNIGRANRIO), Duque de Caxias 25071-202, Brazil.
The central aim of this study was to investigate whether male Wistar rats chronically fed a high-fat diet (HFD) over 106 days present high levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and Na and Ca transport alterations in the left ventricle, together with dyslipidemia and decreased glucose tolerance, and to investigate the influence of Ang-(3-4). The rats became moderately overweight with an expansion of visceral adiposity. Na-transporting ATPases, sarco-endoplasmic reticulum Ca-ATPase (SERCA2a), and the abundance of Angiotensin II receptors were studied together with lipid and glycemic profiles from plasma and left-ventricle echocardiographic parameters fractional shortening (FS) and ejection fraction (EF).
View Article and Find Full Text PDFBiomolecules
October 2024
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca) transient prolongation and a reduction of the Ca transient amplitude. Underlying these phenomena are the downregulation of potassium (K) currents, downregulation of the sarcoplasmic reticulum Ca ATPase (SERCA), increase Ca sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na-Ca) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs.
View Article and Find Full Text PDFBMC Musculoskelet Disord
October 2024
Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, 65212, USA.
EMBO Mol Med
September 2024
Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!