A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

C609T polymorphism of NAD(P)H quinone oxidoreductase 1 as a predictive biomarker for response to amrubicin. | LitMetric

Introduction: Amrubicin is a promising agent in the treatment of lung cancer, but predictive biomarkers have not yet been described. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme known to metabolize amrubicinol, the active metabolite of amrubicin, to an inactive compound. We examined the relationship between NQO1 and amrubicinol cytotoxicity.

Methods: Gene and protein expression of NQO1, amrubicinol cytotoxicity, and C609T single-nucleotide polymorphism of NQO1 were evaluated in 29 lung cancer cell lines: 14 small cell lung cancer (SCLC) and 15 non-SCLC (NSCLC). The involvement of NQO1 in amrubicinol cytotoxicity was evaluated by small interfering RNA against NQO1.

Results: A significant inverse relationship between both gene and protein expression of NQO1 and amrubicinol cytotoxicity was found in all cell lines. Treatment with NQO1 small interfering RNA increased amrubicinol cytotoxicity and decreased NQO1 expression in both NSCLC and SCLC cells. Furthermore, cell lines genotyped homozygous for the 609T allele showed significantly lower NQO1 protein expression and higher sensitivity for amrubicinol than those with the other genotypes in both NSCLC and SCLC cells.

Conclusions: NQO1 expression is one of the major determinants for amrubicinol cytotoxicity, and C609T single-nucleotide polymorphism of NQO1 could be a predictive biomarker for response to amrubicin treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JTO.0b013e318229137dDOI Listing

Publication Analysis

Top Keywords

amrubicinol cytotoxicity
20
nqo1 amrubicinol
16
lung cancer
12
protein expression
12
cell lines
12
nqo1
11
predictive biomarker
8
biomarker response
8
response amrubicin
8
amrubicinol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!