Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Neuroplastic changes involved in latent pain sensitization after surgery are poorly defined. We assessed temporal changes in glucose brain metabolism in a postoperative rat model using positron emission tomography. We also investigated brain metabolism after naloxone administration.
Methods: Rats were given remifentanil anesthetic and underwent a plantar incision, with 1 mg/kg of (-)-naloxone subcutaneously administered on postoperative days 20 and 21. Using the von Frey test, mechanical thresholds were measured pre- and postoperatively at different time points in awake animals during F-fluorodeoxyglucose (F-FDG) uptake. Brain images were also obtained the day before mechanical testing, using a positron emission tomography R4 scanner (Concorde Microsystems, Siemens, Knoxville, TN). Differences in brain activity were assessed utilizing a statistical parametric mapping.
Results: Surgery induced minor changes in F-FDG uptake in the cerebellum, hippocampus, and posterior cortex, which extended to the thalamus, hypothalamus, and brainstem on days 6 and 7. Changes were still present on day 21. Maximal postoperative hypersensitivity was observed on day 2. The administration of (-)-naloxone on day 21 induced significant hypersensitivity, greatly enhancing the effect on F-FDG uptake. In sham-operated rats, naloxone induced changes limited to the striatum and the cerebellum. Nonnociceptive stimulation with von Frey filaments had no effect on F-FDG uptake.
Conclusions: Surgery, remifentanil, and their combination induced long-lasting and significant metabolic changes in the pain brain matrix, with a positive correlation with hypersensitivity after naloxone. Changes in brain F-FDG precipitated by naloxone suggest that surgery under remifentanil anesthetic induces the greatest neuroplastic brain adaptations in opioid-related pathways involved in nociceptive processing and long-lasting pain sensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0b013e31823425f2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!