The genesis and appropriate treatment of neuroinflammation in various infectious and non-infectious disorders of the central nervous system is still a matter of debate. We introduce an alternative and simple experimental model for the investigation of the cellular inflammatory response to bacterial antigens by stereotactic intracerebral injection of heat-inactivated Staphylococcus epidermidis (HISE). HISE-injection resulted in well-circumscribed intraparenchymal deposits encompassed by an early micro- and astroglial response and a selective but sustained opening of the blood-brain barrier (BBB). After 24h, the HISE collections were densely infiltrated by granulocytes and few circumjacent macrophages that became the predominating immunocompetent cell type from day 4 on. CD8a+ lymphocytes peaked at day 4, whereas CD4+ and CD20+ lymphocytes increased gradually in number, developing a scattered infiltrate until day 17, indicating the initiation of an adaptive immune response. MHC class II presenting cells were abundantly recruited from day 1 and eventually shaped an increasingly dense accumulation within the lesion. Intracerebral HISE administration provides a controlled, highly reproducible and well defined influx of immunocompetent cells across the BBB leading to a distinct and condensed inflammatory reaction. The technique is straightforward, easily feasible and may significantly enable further investigations of the initiation, maintenance and therapeutic modulation of acute neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2011.09.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!