An APETALA1-like gene of soybean regulates flowering time and specifies floral organs.

J Plant Physiol

National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China.

Published: December 2011

MADS-box proteins are key transcription factors involved in plant reproductive development. APETALA1 (AP1) in Arabidopsis is a MIKC-type MADS-box gene and plays important roles in flower development. In this research, we isolated and characterized GmAP1, which encoded an AP1-like protein in soybean. GmAP1 contained eight exons and seven introns and was specifically expressed in the flower, especially in the sepal and petal. GmAP1 was a nucleus-localized transcription factor and displayed transactivation activity. It caused early flowering and alteration of floral organs when ectopically expressed in tobacco. To our knowledge, this is the first report characterizing an AP1-like gene from soybean.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2011.08.007DOI Listing

Publication Analysis

Top Keywords

gene soybean
8
floral organs
8
apetala1-like gene
4
soybean regulates
4
regulates flowering
4
flowering time
4
time specifies
4
specifies floral
4
organs mads-box
4
mads-box proteins
4

Similar Publications

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Background: Crocidosema aporema (Walsingham 1914) has historically been the main bud borer species in soybean in Brazil; however, a recent study reported that this species is not C. aporema but an undescribed species. In recent seasons, injury by Crocidosema sp.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont .

Antioxid Redox Signal

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.

To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont . We have performed an integrated study of expression and NO reductase activity in , , , , and mutants in response to microoxia (2% O) or anoxia. An activating role of RegR and NifA was observed under anoxia.

View Article and Find Full Text PDF

Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e ( V DE), ( P sbS), and ( Z EP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!