Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sex chromosomes differ from other chromosomes in the striking divergence they often show in size, structure, and gene content. Not only do they possess genes controlling sex determination that are restricted to either the X or Y (or Z or W) chromosomes, but in many taxa they also include recombining regions. In these 'pseudoautosomal regions' (PARs), sequence homology is maintained by meiotic pairing and exchange in the heterogametic sex. PARs are unique genomic regions, exhibiting some features of autosomes, but they are also influenced by their partial sex linkage. Here we review the distribution and structure of PARs among animals and plants, the theoretical predictions concerning their evolutionary dynamics, the reasons for their persistence, and the diversity and content of genes that reside within them. It is now clear that the evolution of the PAR differs in important ways from that of genes in either the non-recombining regions of sex chromosomes or the autosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tig.2011.05.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!