Schizophrenia is a complex and devastating mental disorder of unknown etiology. Hypofunction of N-methyl-D-aspartate (NMDA) receptors are implicated in the disorder, since phencyclidine (PCP) and other NMDA receptor antagonists mimic schizophrenia-like symptoms in humans and animals so well. Moreover, genetic linkage and post mortem studies strongly suggest a role for altered neuregulin 1 (Nrg1)/erbB4 signaling in schizophrenia pathology. This study investigated the relationship between the NMDA receptor and Nrg1 signaling pathways using the perinatal PCP animal model. Rats (n=5/group) were treated with PCP (10 mg/kg) or saline on postnatal days (PN) 7, 9 and 11 and were sacrificed on PN12, 5 weeks and 20 weeks for biochemical analyses. Western blotting was used to determine total and phosphorylated levels of proteins involved in NMDA receptor/Nrg1 signaling in the prefrontal cortex and hippocampus. In the cortex, PCP treatment altered Nrg1/erbB4 expression levels throughout development, including decreased Nrg1 and erbB4 at PN12 (-25-30%; p<0.05); increased erbB4 and p-erbB4 (+18-27%; p<0.01) at 5 weeks; and decreased erbB4 and p-erbB4 (-16-18%; p<0.05) along with increased Nrg1 (+33%; p<0.01) at 20 weeks. In the hippocampus, levels of Nrg1/erbB4 were largely unaffected apart from a significant decrease in p-erbB4 at 20 weeks (-13%; p<0.001); however NMDA receptor subunits and PSD-95 showed increases at PN12 and 5 weeks (+20-32%; p<0.05), and decreases at 20 weeks (-22-29%; p<0.05). This study shows that NMDA receptor antagonism early in development can have long term effects on Nrg1/erbB4 expression which could be important in understanding pathological processes which might be involved in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.euroneuro.2011.09.002 | DOI Listing |
FASEB J
January 2025
Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Neuropsychiatry Department, Faculty of Medicine, Galala University, Suez, Egypt; Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Autism Spectrum Disorder (ASD) represents a clinical challenge due to its diverse behavioral symptoms and complex neuro-pathophysiology. Finding effective treatments that target the fundamental mechanisms of ASD remains a top priority. This narrative review presents the potential of the NMDA-receptor blocker memantine in managing ASD symptoms.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!