The use of delivery vehicles to selectively transport anticancer agents to tumors is very attractive to address both toxicity and efficacy issues. We report a novel approach based on hybrid nucleoside-lipids allowing the efficient encapsulation and delivery of cisplatin. We demonstrate that the nucleoside polar heads guide the self-assembly of the aggregates into highly loaded and stable nanoparticles. The nanoparticles, which are efficient vehicles for the delivery of cisplatin into different sensitive and resistant cancer cell lines, can overcome the disadvantages and limitations of drug delivery systems previously reported.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn202291kDOI Listing

Publication Analysis

Top Keywords

delivery cisplatin
8
delivery
5
nucleoside-lipid-based nanoparticles
4
nanoparticles cisplatin
4
cisplatin delivery
4
delivery delivery
4
delivery vehicles
4
vehicles selectively
4
selectively transport
4
transport anticancer
4

Similar Publications

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

This study explores the development of a sustainable drug delivery system using cellulose nanoparticles (CNPs) derived from potato pulp for the controlled release of phosphoaminopyrazine (PAP), a promising anticancer agent. CNPs were synthesized via nanoprecipitation, and PAP was loaded through in-situ nanoprecipitation, achieving a high loading efficiency of 79.2 %.

View Article and Find Full Text PDF

Peritoneal chemotherapy delivery systems for ovarian cancer treatment: systematic review of animal models.

Front Oncol

January 2025

Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil.

Introduction: Intraperitoneal chemotherapy for ovarian cancer treatment has controversial benefits as most methodologies are associated with significant morbidity. We carried out a systematic review to compare tumor response, measured by tumor weight and volume, between intraperitoneal chemotherapy delivered via drug delivery systems (DDSs) and free intraperitoneal chemotherapy in animal models of ovarian cancer. The secondary aim was to assess the toxicity of DDS-delivered chemotherapy, based on changes in animal body weight.

View Article and Find Full Text PDF

Ovarian cancer is a leading cause of cancer-related deaths in women, and the development of chemoresistance remains a major challenge during and after its treatment. Exosomes, small extracellular vesicles involved in intercellular communication, have emerged as potential biomarkers and therapeutic targets in ovarian cancer. This review summarizes the current literature on differences in exosomal protein/gene expression between chemosensitive and chemoresistant ovarian cancer, and the effects of exosomal modifications on chemotherapeutic response.

View Article and Find Full Text PDF

Nanocarrier-mediated cancer therapy with cisplatin: .

Heliyon

April 2024

Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia.

Aims: Cisplatin is a frontline chemotherapeutic utilized to attenuate multiple cancers in the clinic. Given its side-effects, a new cisplatin formulation which could prevent cytotoxicity, metabolic deficiencies and metastasis is much needed. This study investigates whether nanocarriers can provide a better mode of drug delivery in preclinical cancer models seeking a potent anticancer therapeutic agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!