PCDH10 has been implicated as a tumor suppressor, since epigenetic alterations of this gene have been noted in multiple tumor types. However, to date, studies regarding its role in acute and chronic leukemias are lacking. Here, we have investigated the presence of promoter hypermethylation of two CpG islands of the PCDH10 gene by methylation-specific PCR in 215 cases of various subsets of myeloid- and lymphoid-lineage leukemias. We found that PCDH10 promoter hypermethylation was frequent in both B-cell (81.9%) and T-cell (80%) acute lymphoblastic leukemia (ALL), while it was present in low frequency in most subtypes of myeloid leukemias (25.9%) and rare in chronic myeloid leukemia (2.2%). PCDH10 expression was downregulated via promoter hypermethylation in primary ALL samples (N = 4) and leukemia cell lines (N = 11). The transcriptional repression caused by PCDH10 methylation could be restored by pharmacologic inhibition of DNA methyltransferases. ALL cell lines harboring methylation-mediated inactivation of PCDH10 were less sensitive to commonly used leukemia-specific drugs suggesting that PCDH10 methylation might serve as a biomarker of chemotherapy response. Our results demonstrate that PCDH10 is a target of epigenetic silencing in ALL, a phenomenon that may impact lymphoid-lineage leukemogenesis, serve as an indicator of drug resistance and may also have potential implications for targeted epigenetic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/gcc.20922 | DOI Listing |
Viruses
November 2024
Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
Robust CD8 T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8 T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Bioinformatics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
Epigenetic dysregulation is a common feature of cancer. Promoter demethylation of tumor-promoting genes and global DNA hypomethylation may trigger tumor progression. Epigenetic changes are unstable; thus, research has focused on detecting remedies that target epigenetic regulators.
View Article and Find Full Text PDFBiomolecules
November 2024
Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
Liquid biopsy enables real-time monitoring of tumor development and response to therapy through the analysis of CTCs and ctDNA. NALCN is a sodium leak channel that is frequently involved in tumor evolution and immunity and acts as a tumor suppressor. Deletion of NALCN has been shown to increase cancer metastasis and the number of CTCs in peripheral blood.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Embryo-uterine interaction during embryo implantation depends on the coordinated expression of numerous genes in the receptive endometrium. While DNA methylation is known to play a significant role in controlling gene expression, specific molecular mechanisms underlying this regulatory event remain elusive in early porcine pregnancy. Here, we investigated the genome-wide DNA methylation landscape in the Yorkshire and Meishan pig's endometrium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!