Ahasl1 is a multilallelic locus where all the induced and natural mutations for herbicide tolerance were described thus far in sunflower (Helianthus annuus L.). The allele Ahasl1-1 confers moderate tolerance to imidazolinone (IMI), Ahasl1-2, and Ahasl1-3 provides high levels of tolerance solely to sulfonylurea (SU) and IMI, respectively. An Argentinean wild sunflower population showing plants with high level of tolerance to either an IMI and a SU herbicide was discovered and used to develop an inbred line designated RW-B. The objectives of this work were to determine the relative level and pattern of cross-tolerance to different AHAS-inhibiting herbicides, the mode of inheritance, and the molecular basis of herbicide tolerance in this line. Slight or no symptoms observed after application of different herbicides indicated that RW-B possesses a completely new pattern of tolerance to AHAS-inhibiting herbicides in sunflower. Biomass response to increasing doses of metsulfuron or imazapyr demonstrated a higher level of tolerance in RW-B with respect to Ahasl1-1/Ahasl1-1 and Ahasl1-2/Ahasl1-2 lines. On the basis of genetic analyses and cosegregation test, it was concluded that tolerance to imazapyr in the original population is inherited as a single, partially dominant nuclear gene and that this gene is controlling the tolerance to four different AHAS-inhibiting herbicides. Pseudo-allelism test permitted us to conclude that the tolerant allele present in RW-B is an allelic variant of Ahasl1-1 and was designated as Ahasl1-4. Nucleotide and deduced amino acid sequence indicated that the Ahasl1-4 allele sequence of RW-B has a leucine codon (TTG) at position 574 (relative to the Arabidopsis thaliana AHAS sequence), whereas the enzyme from susceptible lines has a tryptophan residue (TGG) at this position. The utilization of this new allele in the framework of weed control and crop rotation is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-011-1710-9 | DOI Listing |
J Agric Food Chem
July 2024
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
Given the prevalence of the malignant weed Chinese Sprangletop ( (L.) Nees) in rice fields, the development of novel herbicides against this weed has aroused wide interest. Here, we report a novel diphenyl ether-pyrimidine hybrid, DEP-, serving as a systematic pre/postemergence herbicide candidate for broad-spectrum weed control in rice fields, specifically for .
View Article and Find Full Text PDFJ Agric Food Chem
January 2024
College of Sciences, China Agricultural University, Beijing 100193, China.
In this study, we investigated the characteristics and herbicidal potential of bispyribac phenolic esters, which belong to the 2-(pyrimidin-2-yloxy)benzoic acid (PYB) class of acetohydroxyacid synthase (AHAS-)-inhibiting herbicides. These herbicides are primarily used for controlling Poaceae and broadleaf weeds. Among them, bispyribac-sodium stands out as a representative in this class.
View Article and Find Full Text PDFPestic Biochem Physiol
June 2023
Department of Plant Sciences, University of California, Davis, CA 95616, USA. Electronic address:
Weed resistance to acetohydroxyacid synthase (AHAS) inhibiting herbicides has been a critical issue for rice growers worldwide since the early 1990's. In California, resistance to bensulfuron-methyl was first detected in Cyperus difformis in 1993. Since then, populations of most major weeds of rice in California have been reported to show resistance to at least one AHAS inhibitor.
View Article and Find Full Text PDFJ Agric Food Chem
April 2023
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
Amidosulfuron (AS) is from the commercial sulfonylurea herbicide family. It is highly effective against dicot broad-leaf weeds. This herbicide targets acetohydroxyacid synthase (AHAS), the first enzyme in the branched chain amino acid biosynthesis pathway.
View Article and Find Full Text PDFFungal Genet Biol
April 2022
College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang. Electronic address:
Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!