AI Article Synopsis

  • Hepatocellular carcinoma (HCC) is a leading cause of liver cancer deaths globally, with limited treatment options and a low survival rate.
  • A study on HCC cells (Mahlavu) showed that treatment with gefitinib, a cancer drug, led to increased resistance, signified by a rise in CD133 expression and heightened IGF-1R signaling.
  • The research indicates that the nuclear relocation of IGF-1R in response to gefitinib treatment may be linked to this drug resistance and might be associated with the upregulation of cancer stem cell traits.

Article Abstract

Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.23041DOI Listing

Publication Analysis

Top Keywords

nuclear translocation
20
mahlavu cells
12
cd133 expression
12
igf-1r nuclear
12
gefitinib resistance
8
hcc mahlavu
8
upregulation cd133
8
igf-1r
8
igf-1r signaling
8
signaling pathway
8

Similar Publications

Exogenous Melatonin Boosts Heat Tolerance in via Modulation.

Plants (Basel)

December 2024

College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China.

is one the most commonly cultivated ornamental plant of economic importance and faces major challenges under heat stress. Melatonin has been widely shown to regulate plant stress response; however, the exact mechanism involved in heat stress in has yet to be determined. Here, we observed that in vitro plantlets supplemented with melatonin in the culture medium exhibited higher chlorophyll content, relative ion leakage, and fresh weight after 12 d of high-temperature treatment; the optimal concentration was established at 5 mg/L.

View Article and Find Full Text PDF

Objective: Prenatal detection of complex chromosomal rearrangements (CCR) is extremely rare, but is of great clinical importance, since CCR can be causative of different congenital disorders. We present an exceptionally rare case of prenatally diagnosed Saethre-Chotzen syndrome (SCS) rising as a consequence of chromothripsis involving chromosomes 5, 7 and 11 and deletion of TWIST1 gene.

Case Report: Brachycephaly, hypertelorism, flat face, micrognathia, relative macroglossia and small posterior fossa were noted on ultrasound examination at 28th gestational week.

View Article and Find Full Text PDF

Nuclear translocation of RON receptor tyrosine kinase. New mechanistic and functional insights.

Cytokine Growth Factor Rev

January 2025

Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:

Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.

View Article and Find Full Text PDF

HGF-HGFR-STAT signaling axis regulates haemocyte proliferation in oyster Crassostrea gigas.

Dev Comp Immunol

January 2025

Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China. Electronic address:

Article Synopsis
  • The study identified a homologue of hepatocyte growth factor (CgHGF-like) and its receptor (CgHGFR) in the oyster Crassostrea gigas, which are involved in cell growth and division.
  • Both genes are expressed in all tested tissues, with the highest levels found in haemocytes, and their expression significantly increases when the oysters are stimulated with Vibrio splendidus.
  • The interaction between CgHGF-like and CgHGFR plays a crucial role in regulating haemocyte proliferation during immune responses, primarily by activating the CgSTAT pathway.
View Article and Find Full Text PDF

Abscisic acid improves non-alcoholic fatty liver disease in mice through the AMPK/NRF2/KEAP1 signaling axis.

Biochem Biophys Res Commun

January 2025

Department of Gastroenterology, Mianyang 404 Hospital, Sichuan, 621000, China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) has emerged as a global health concern, placing a substantial financial strain on public health systems. Currently, no specific pharmacological treatments are recommended in existing guidelines. Abscisic acid (ABA), a natural plant hormone, is recognized for its promising potential in the healthcare field due to its diverse biological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!