Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri.

BMC Syst Biol

Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA.

Published: September 2011

Background: One of the puzzles in bacterial quorum sensing is understanding how an organism integrates the information gained from multiple input signals. The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism that receives input from three pheromone signals, including two acyl homoserine lactone (HSL) signals. While the role of the 3-oxo-C6 homoserine lactone (3OC6HSL) signal in activating the lux genes has been extensively studied and modeled, the role of the C8 homoserine lactone (C8HSL) is less obvious, as it can either activate luminescence or block its activation. It remains unclear how crosstalk between C8HSL and 3OC6HSL affects the information that the bacterium obtains through quorum sensing.

Results: We have used microfluidic methods to measure the response of individual V.fischeri cells to combinations of C8HSL and 3OC6HSL. By measuring the fluorescence of individual V.fischeri cells containing a chromosomal gfp-reporter for the lux genes, we study how combinations of exogenous HSLs affect both the population average and the cell-to-cell variability of lux activation levels. At the level of a population average, the crosstalk between the C8HSL and 3OC6HSL inputs is well-described by a competitive inhibition model. At the level of individual cells, the heterogeneity in the lux response depends only on the average degree of activation, so that the noise in the output is not reduced by the presence of the second HSL signal. Overall we find that the mutual information between the signal inputs and the lux output is less than one bit. A nonlinear correlation between fluorescence and bioluminescence outputs from lux leads to different noise properties for these reporters.

Conclusions: The lux genes in V.fischeri do not appear to distinguish between the two HSL inputs, and even with two signal inputs the regulation of lux is extremely noisy. Hence the role of crosstalk from the C8HSL input may not be to improve sensing precision, but rather to suppress the sensitivity of the switch for as long as possible during colony growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224347PMC
http://dx.doi.org/10.1186/1752-0509-5-153DOI Listing

Publication Analysis

Top Keywords

homoserine lactone
12
lux genes
12
crosstalk c8hsl
12
c8hsl 3oc6hsl
12
vibrio fischeri
8
quorum sensing
8
lux
8
individual vfischeri
8
vfischeri cells
8
population average
8

Similar Publications

Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu stress.

View Article and Find Full Text PDF

Assessment of microbial antagonistic activity and Quorum Sensing Signal Molecule (Cyclopeptides-DKPs and N-Acyl Homoserine Lactones) detection in bacterial strains obtained from avocado thrips (Thysanoptera: Thripidae).

Biotechnol Rep (Amst)

March 2025

Microbiodiversity and bioprospection research group, Laboratorio de Biología Celular 19A-310, Molecular, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, 050034, Colombia.

The control of avocado pests and diseases heavily relies on the use of several types of pesticides, some of which are strictly monitored or not internationally accepted. New sources of bioactive molecules produced by phytopathogen-inhibiting microorganisms offer an excellent alternative for the control of pests and diseases. This study explores the potential antagonistic action against phytopathogenic microorganisms, using bacterial strains obtained from avocado thrips.

View Article and Find Full Text PDF

uses quorum sensing (QS) to regulate the expression of dozens of genes, many of which encode shared products, called "public goods." possesses two complete acyl-homoserine lactone (AHL) QS circuits: the LasR-I and RhlR-I systems. Canonically, these systems are hierarchically organized: RhlR-I activity depends on LasR-I activation.

View Article and Find Full Text PDF

N-acyl-homoserine-lactones as a critical factor for biofilm formation during the initial adhesion stage in drinking water distribution systems.

Environ Pollut

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:

The N-acyl-homoserine-lactone (AHLs)-mediated quorum sensing (QS) system is crucial for the coordination of microbial behaviors within communities. However, the levels of AHLs in biofilms in drinking water distribution systems (DWDSs) and their impact on biofilm formation remain poorly understood. Herein, we simulated DWDSs via biofilm reactors to explore the presence and influence of AHLs during the initial stages of biofilm formation on pipe walls.

View Article and Find Full Text PDF

Biochar Reduced the Risks of Human Bacterial Pathogens in Soil via Disturbing Quorum Sensing Mediated by Persistent Free Radicals.

Environ Sci Technol

December 2024

Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.

Article Synopsis
  • * The presence of persistent free radicals (PFRs) in RS biochar contributes to the degradation of a signaling molecule (C4-HSL), which disrupts the communication (quorum sensing) among HBPs.
  • * This research highlights the potential of biochar as a soil remediation technology to lower the risks posed by HBPs, emphasizing the importance of biochar's source in its effectiveness.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!