A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional characterization of the human translocator protein (18kDa) gene promoter in human breast cancer cell lines. | LitMetric

Functional characterization of the human translocator protein (18kDa) gene promoter in human breast cancer cell lines.

Biochim Biophys Acta

The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4.

Published: January 2012

The translocator protein (18kDa; TSPO) is a mitochondrial drug- and cholesterol-binding protein that has been implicated in several processes, including steroidogenesis, cell proliferation, and apoptosis. Expression of the human TSPO gene is elevated in several cancers. To understand the molecular mechanisms that regulate TSPO expression in human breast cancer cells, the TSPO promoter was identified, cloned, and functionally characterized in poor-in-TSPO hormone-dependent, non-aggressive MCF-7 cells and rich-in-TSPO hormone-independent, aggressive, and metastatic MDA-MB-231 breast cancer cells. RNA ligase-mediated 5'-rapid amplification of cDNA ends analysis indicated transcription initiated at multiple sites downstream of a GC-rich promoter that lacks functional TATA and CCAAT boxes. Deletion analysis indicated that the region from -121 to +66, which contains five putative regulatory sites known as GC boxes, was sufficient to induce reporter activity up to 24-fold in MCF-7 and nearly 120-fold in MDA-MB-231 cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that Sp1, Sp3 and Sp4 bind to these GC boxes in vitro and to the endogenous TSPO promoter. Silencing of Sp1, Sp3 and Sp4 gene expression reduced TSPO levels. In addition, TSPO expression was epigenetically regulated at one or more of the identified GC boxes. Disruption of the sequence downstream of the main start site of TSPO differentially regulated TSPO promoter activity in MCF-7 and MDA-MB-231 cells, indicating that essential elements contribute to its differential expression in these cells. Taken together, these experiments constitute the first in-depth functional analysis of the human TSPO gene promoter and its transcriptional regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249510PMC
http://dx.doi.org/10.1016/j.bbagrm.2011.09.001DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
tspo promoter
12
tspo
10
translocator protein
8
protein 18kda
8
gene promoter
8
human breast
8
expression human
8
human tspo
8
tspo gene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!