The agronomic environments in which tomatoes are cultivated potentially affect the levels of antioxidants and other metabolites in commercial products. In this study, biochemical and metabolomic techniques were used to assess the differences between ketchups produced by organic and conventional systems. An untargeted metabolomic approach using QToF-MS was used to identify those nutrients that have the greatest impact on the overall metabolomic profile of organic ketchups as compared to conventional ones. Individual polyphenols were quantified using LC-ESI-QqQ. This multifaceted approach revealed that the agronomic environment in which tomatoes are grown induces alterations in the content of antioxidant capacity, phenolics, and other metabolites in ketchups. Organic cultivation was found to provide tomatoes and tomato-derived products with a significantly higher content of antioxidant microconstituents, whereas glutamylphenylalanine and N-malonyltryptophan were detected only in conventional ketchups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf202822s | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFmSystems
January 2025
Zoological Institute, Kiel University, Kiel, Germany.
The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.
View Article and Find Full Text PDFCells
December 2024
Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
Breast cancer is a cancer with global prevalence and a surge in the number of cases with each passing year. With the advancement in science and technology, significant progress has been achieved in the prevention and treatment of breast cancer to make ends meet. The scientific intradisciplinary subject of "metabolomics" examines every metabolite found in a cell, tissue, system, or organism from different sources of samples.
View Article and Find Full Text PDFJ Cancer Prev
December 2024
Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India.
Given the evolutionary nature of tumor complexities and heterogeneity, the early diagnosis of cancer encounters various challenges. Complexities at the level of metabolite reprogramming are compelling in the background of invasiveness, metastasis, drug- and radiation-induced metabolic alterations, immunotherapy-influenced changes, and pro-tumor niche including microbiome. Therefore, it is crucial to examine both current and future obstacles associated with early cancer detection specifically in the context of tumor metabolite biomarkers at preclinical and clinical levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!