Despite the abundance of octapodal species and their evolutionary importance in originating terrestrial locomotion, the locomotion mechanics of spiders has received little attention so far. In this investigation we use inverse dynamics to study the locomotor performance of Grammostola mollicoma (18 g). Through 3-D kinematic measurements, the trajectory of the eight limbs and cephalothorax or abdomen allowed us to estimate the motion of the body centre of mass (COM) at different speeds. Classic mechanics of locomotion and multivariate analysis of several variables such as stride length and frequency, duty factor, mechanical external work and energy recovery, helped to identify two main gaits, a slow (speed <11 cm s(-1)) one and a fast one characterised by distinctive 3-D trajectories of COM. The total mechanical work (external + internal) calculated in the present study and metabolic data from the literature allowed us to estimate the locomotion efficiency of this species, which was less than 4%. Gait pattern due to alternating limb support, which generates asymmetrical COM trajectories and a small but consistent energy transfer between potential and kinetic energies of COM, is discussed both in terms of coordination indices and by referring to the octopod as formed by two quadrupeds in series. Analogies and differences of the newly obtained parameters with the allometric data and predictions are also illustrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.057471 | DOI Listing |
Ambio
October 2013
Department of Ecology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,
Flagships are one conservation education tool. We present a proposed flagship species fleet for environmental education in central Chile. Our methods followed recent flagship guidelines.
View Article and Find Full Text PDFJ Exp Biol
May 2012
Sección Entomología, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay.
Theraphosid tarantulas, like all other spiders, secrete silk from spigots on the abdominal spinnerets. A few years ago, it was proposed that the large tarantula Aphonopelma seemanni could extrude silk from specialized spigots on the tarsi to help adhesion to vertical surfaces. This suggestion was later questioned because silk was not observed after the spinnerets had been sealed.
View Article and Find Full Text PDFJ Exp Biol
October 2011
Physiomechanics of Locomotion Laboratory, Department of Human Physiology, University of Milan, 20133 Milan, Italy.
Despite the abundance of octapodal species and their evolutionary importance in originating terrestrial locomotion, the locomotion mechanics of spiders has received little attention so far. In this investigation we use inverse dynamics to study the locomotor performance of Grammostola mollicoma (18 g). Through 3-D kinematic measurements, the trajectory of the eight limbs and cephalothorax or abdomen allowed us to estimate the motion of the body centre of mass (COM) at different speeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!