Domestic cats have several features that make them ideal vehicles for interspecies transmission of influenza viruses; however, they have been largely overlooked as potential reservoirs or bridging hosts. In this study, we conducted serological surveillance to assess the prevalence of novel pandemic H1N1 as well as seasonal human influenza virus infections in domestic cats in Ohio. Four hundred serum samples collected from domestic cats (September 2009 to September 2010) were tested using a hemagglutination inhibition (HI) test. The seroprevalences of pandemic H1N1, seasonal H1N1, and H3N2 were 22.5%, 33%, and 43.5%, respectively. In addition, a significant association between clinical feline respiratory disease and influenza virus infection was documented. In this sample of cats, the prevalence of pandemic H1N1 did not follow the seasonality pattern of seasonal H1N1 or H3N2 influenza, similar to observations in humans. Pandemic H1N1 seroprevalence did not vary in relation to ambient temperature changes, while the seroprevalence of seasonal H3N2 and H1N1 influenza viruses increased with the decline of ambient temperature. Our results highlight the high prevalence of influenza virus infection in domestic cats, a seasonality pattern of influenza virus infection comparable to that in humans, and an association of infection with clinical respiratory disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233002 | PMC |
http://dx.doi.org/10.1128/JCM.05415-11 | DOI Listing |
Nat Immunol
January 2025
Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.
View Article and Find Full Text PDFArch Virol
January 2025
National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season.
View Article and Find Full Text PDFEur Respir Rev
January 2025
Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid Spain
Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Poultry Science, College of Agriculture, Tarbiat Modares University, Tehran, Iran 14115336.
This study was conducted to evaluate the effects of E.coli Nissle 1917 (EcN) on immune responses, blood parameters, oxidative stress, egg quality, and performance of laying Japanese quail. A total of one-hundred day-old quail chicks were assigned to 1 of 4 treatments based on probiotic concentration: 1 (0 CFU/mL; control), 2 (10 CFU/mL), 3 (10 CFU/mL), and 4 (10 CFU/mL).
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan.
Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!