The efficacy of organophosphorus radicals as anticoking agents was subjected to a computational study in which a representative set of radicals derived from industrially relevant organophosphorus additives was used to explore competitive reaction pathways on the graphene-like coke surface formed during thermal cracking. The aim was to investigate the nature of the competing reactions of different organophosphorus radicals on coke surfaces, and elucidate their mode of attack and inhibiting effect on the forming coke layer by use of contemporary computational methods. Density functional calculations on benzene and a larger polyaromatic hydrocarbon, namely, ovalene, showed that organophosphorus radicals have a high propensity to add to the periphery of the coke surface, inhibiting methyl radical induced hydrogen abstraction, which is known to be a key step in coke growth. Low addition barriers reported for a phosphatidyl radical suggest competitive aptitude against coke formation. Moreover, organophosphorus additives bearing aromatic substituents, which were shown to interact with the coke surface through dispersive π-π stacking interactions, are suggested to play a nontrivial role in hindering further stacking among coke surfaces. This may be the underlying rationale behind experimental observation of softer coke in the presence of organophosphorus radicals. The ultimate goal is to provide information that will be useful in building single-event microkinetic models. This study presents pertinent information on potential reactions that could be taken up in these models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201100712 | DOI Listing |
J Hazard Mater
December 2024
Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China.
Dimethoate is a toxic organophosphorus insecticide and its contamination of water poses a threat to the surrounding ecosystem. In order to enhance the removal effect of ferrate (Fe(VI)) on dimethoate, modified graphene-like biochar (SIZBC) with reduction and adsorption properties was prepared in this study. Compared with Fe(VI) alone, the removal of dimethoate by Fe(VI)/SIZBC increased from 26 % to more than 97 %, and the reaction rate was accelerated by 34 times.
View Article and Find Full Text PDFFood Chem
December 2024
Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:
Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China.
Metal-organic frameworks (MOFs) are promising electrochemiluminescent (ECL) nanoemitters. Great endeavors have been made to optimize the inherent luminescent properties, yet most MOFs suffer from poor coreactant activation ability, resulting in limited ECL. Therefore, it is urgent to integrate and design efficient catalytic centers within MOFs.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
β-Amino acids serve as crucial building blocks for a broad range of biologically active molecules and peptides with potential as peptidomimetics. While numerous methods have been developed for the synthesis of β-amino acids, most of them require multistep preparation of specific reagents and substrates, which limits their synthetic practicality. In this regard, a homologative transformation of abundant and readily available α-amino acids would be an attractive approach for β-amino acid synthesis.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Glyphosate (GH) wastewater potentially poses hazards to human health and the aquatic environment, due to its persistence and toxicity. A highly superhydrophilic and stable graphite felt (GF)/polydopamine (PDA)/titanium dioxide nanotubes (TiO-NT)/SnO/Ru anode was fabricated and characterized for the degradation of glyphosate wastewater. Compared to control anodes, the GF/PDA/TiO-NT/SnO/Ru anode exhibited the highest removal efficiency (near to 100%) and a yield of phosphate ions of 76.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!