We report the study of the net donating ability of monodentate and bidentate P ligands stemming from secondary phosphine oxides (SPOs). We experimentally measured and/or calculated the frequencies of CO stretching modes of various metal carbonyl complexes. The inferred electronic properties of the ligands span an unprecedented range, going from π-accepting phosphite-like compounds, to extremely electron-donating ligands outclassing N-heterocyclic carbenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201101663 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
Two-dimensional materials with a combination of a moderate bandgap, highly anisotropic carrier mobility, and a planar structure are highly desirable for nanoelectronic devices. This study predicts a planar BeP monolayer with hexagonal symmetry that meets the aforementioned desirable criteria using the CALYPSO method and first-principles calculations. Calculations of electronic properties demonstrate that the hexagonal BeP monolayer is an intrinsic semiconductor with a direct band gap of approximately 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China.
High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!