Chemoselective reactions are important tools for the modification of peptides and proteins. Thereby the modification is desired to be site specific and bioorthogonal. Here we describe the site-specific modification of azido-proteins via a Staudinger-type phosphite ligation. The reaction was carried out in aqueous system on proteins containing p-azido-phenylalanine in a single position introduced by the amber codon technique. A selective introduction of branched polyethylene scaffolds can be achieved with the application of the methodology reported herein.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-331-8_15DOI Listing

Publication Analysis

Top Keywords

site-specific modification
8
modification proteins
4
proteins staudinger-phosphite
4
staudinger-phosphite reaction
4
reaction chemoselective
4
chemoselective reactions
4
reactions tools
4
tools modification
4
modification peptides
4
peptides proteins
4

Similar Publications

Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life.

View Article and Find Full Text PDF

The molecular basis of Human FN3K mediated phosphorylation of glycated substrates.

Nat Commun

January 2025

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724, USA.

Glycation, a non-enzymatic post-translational modification occurring on proteins, can be actively reversed via site-specific phosphorylation of the fructose-lysine moiety by FN3K kinase, to impact the cellular function of the target protein. A regulatory axis between FN3K and glycated protein targets has been associated with conditions like diabetes and cancer. However, the molecular basis of this relationship has not been explored so far.

View Article and Find Full Text PDF

Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (mA) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity.

View Article and Find Full Text PDF

The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A central strategy for genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePV have been well characterized in human pathogens' antigenic variation and virulence factor production.

View Article and Find Full Text PDF

Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins in eukaryotes has predominantly relied on the pyrrolysyl-tRNA synthetase/tRNA pair. However, access to additional easily engineered pairs is crucial for expanding the structural diversity of the ncAA toolbox in eukaryotes. The Escherichia coli-derived leucyl-tRNA synthetase (EcLeuRS)/tRNA pair presents a particularly promising alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!