The protein tyrosine phosphatase non-receptor 22 (PTPN22) gene encodes for lymphoid protein tyrosine phosphatase. Recent studies demonstrated the association between the +1858T, -1123G>C variants of PTPN22 gene and type 1 diabetes mellitus in Caucasian and Japanese populations. This study examined the relationship between the polymorphism of PTPN22 gene and latent autoimmune 1 diabetes in adults (LADA) in Chinese Hans. We studied 229 adult Chinese patients with LADA (LADA group) and 210 healthy volunteers (control group). The -1123G>C and +1858C>T polymorphisms of PTPN22 gene were determined by PCR-restriction fragment length polymorphism method. Further, genotypic/allelic frequencies and clinical characteristics were compared between two groups. There was a significant difference of frequencies of the -1123G>C polymorphism between LADA and control groups (OR = 1.99, 95% CI = 1.24-3.2; P = 0.001). However, no significant differences in the +1858C>T genotypic (CC, CT) and allelic (C, T) frequencies were found. Furthermore, the frequencies of the -1123 GC, CC genotype in male patients with LADA were significantly higher compared with male healthy volunteers (OR = 1.65, 95% CI = 1.21-2.26; P = 0.005). The analysis of covariance demonstrated no difference between glycosylated hemoglobin, body mass index, duration of diabetes, C-peptide, and GAD-Ab titer between the group carrying GC/CC and the group without allele C. In conclusion, the -1123G>C promoter polymorphism of PTPN22 gene, but not the +1858C>T variant, is associated with LADA in adult Chinese Hans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-011-9291-4 | DOI Listing |
Int J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFInt Dent J
December 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China. Electronic address:
Free Radic Biol Med
December 2024
INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France. Electronic address:
Neutrophils are essential for host defense against infections, but they also play a key role in acute and chronic inflammation. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes the lymphoid-specific tyrosine phosphatase (Lyp) and a genetic single-nucleotide polymorphism of PTPN22 rs2476601 (R620W) has been associated with several human autoimmune diseases, including rheumatoid arthritis (RA). Here, we investigated the role of Lyp in TNFα-induced priming of neutrophil ROS production and in the development of arthritis using new selective Lyp inhibitors.
View Article and Find Full Text PDFCell Signal
December 2024
Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China. Electronic address:
70 % of the ulcerative colitis (UC) linked gene loci are associated with other autoimmune or immunodeficient diseases. The phosphatase activity of PTPN22 can regulate the development of T cells and contribute to regulate the level of inflammation in autoimmune diseases. We produced PTPN22-CS thymus-specific transgenic mice, which suppressed PTPN22 enzyme activity in the thymocytes.
View Article and Find Full Text PDFFront Immunol
November 2024
Eli Lilly and Company, Indianapolis, IN, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!