Neurofibromatosis type 1 (NF1) is a common genetic condition caused by mutations in the NF1 gene. Patients often suffer from tissue-specific lesions associated with local double-inactivation of NF1. In this study, we generated a novel fracture model to investigate the mechanism underlying congenital pseudarthrosis of the tibia (CPT) associated with NF1. We used a Cre-expressing adenovirus (AdCre) to inactivate Nf1 in vitro in cultured osteoprogenitors and osteoblasts, and in vivo in the fracture callus of Nf1(flox/flox) and Nf1(flox/-) mice. The effects of the presence of Nf1(null) cells were extensively examined. Cultured Nf1(null)-committed osteoprogenitors from neonatal calvaria failed to differentiate and express mature osteoblastic markers, even with recombinant bone morphogenetic protein-2 (rhBMP-2) treatment. Similarly, Nf1(null)-inducible osteoprogenitors obtained from Nf1 MyoDnull mouse muscle were also unresponsive to rhBMP-2. In both closed and open fracture models in Nf1(flox/flox) and Nf1(flox/-) mice, local AdCre injection significantly impaired bone healing, with fracture union being <50% that of wild type controls. No significant difference was seen between Nf1(flox/flox) and Nf1(flox/-) mice. Histological analyses showed invasion of the Nf1(null) fractures by fibrous and highly proliferative tissue. Mean amounts of fibrous tissue were increased upward of 10-fold in Nf1(null) fractures and bromodeoxyuridine (BrdU) staining in closed fractures showed increased numbers of proliferating cells. In Nf1(null) fractures, tartrate-resistant acid phosphatase-positive (TRAP+) cells were frequently observed within the fibrous tissue, not lining a bone surface. In summary, we report that local Nf1 deletion in a fracture callus is sufficient to impair bony union and recapitulate histological features of clinical CPT. Cell culture findings support the concept that Nf1 double inactivation impairs early osteoblastic differentiation. This model provides valuable insight into the pathobiology of the disease, and will be helpful for trialing therapeutic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.528 | DOI Listing |
Cureus
November 2024
Neurosurgery, Erciyes University Faculty of Medicine, Kayseri, TUR.
Intramedullary schwannomas are a type of benign spinal cord tumor that originates from the Schwann cells of the nerve sheath. They are relatively rare and typically occur within the spinal cord itself, rather than in the surrounding tissue. Treatment options for cervical intramedullary schwannomas include surgical removal of the tumor, radiation therapy, and observation.
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
December 2024
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the NF1 gene, affecting approximately 1 in 3 000 newborns worldwide. Plexiform neurofibroma (PNF) is one of the common clinical manifestations of NF1. PNF can lead to a range of clinical symptoms, with a high rate of disability and teratogenesis; furthermore, there is a risk for malignant transformation that poses significant threats to the life and health of patients.
View Article and Find Full Text PDFInt J Surg Case Rep
December 2024
Department of Orthopedics and Trauma-Surgery P32, University Hospital Center IBN Rochd, Casablanca, Morocco.
Introduction: Neurofibromas are rare benign tumors of peripheral nerve sheaths, and hand involvement is particularly uncommon. This case report presents a large neurofibroma located in the thenar region, a critical area for thumb opposition and hand dexterity, posing unique surgical challenges.
Presentation Of Case: A 23-year-old female presented with a 3-year history of a progressively enlarging mass in the thenar region of the right hand, accompanied by nocturnal pain but no neurological deficits.
Cancer Genomics Proteomics
December 2024
Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background/aim: Neurofibromatosis type 1 (NF1) is a genetic disorder with an incidence of approximately one in 3,000. More than half of the patients have new de novo pathogenic variants of the NF1 gene. In most family cases, all family members share an identical NF1-variant.
View Article and Find Full Text PDFEJNMMI Res
December 2024
Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
Background: To intraindividually compare the diagnostic performance of positron emission computed tomography (F-18-FDG-PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) in a non-inferiority design for the discrimination of peripheral nerve sheath tumours as benign (BPNST), atypical (ANF), or malignant (MPNST) in patients with neurofibromatosis type 1 (NF1).
Results: In this prospective single-centre study, thirty-four NF1 patients (18 male; 30 ± 11 years) underwent F-18-FDG-PET/CT and multi-b-value DW-MRI (11 b-values 0 - 800 s/mm²) at 3T. Sixty-six lesions corresponding to 39 BPNST, 11 ANF, and 16 MPNST were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!